Jobs
101-
Β· 19 views Β· 0 applications Β· 3d
Senior Data Engineer
Full Remote Β· Ukraine Β· 7 years of experience Β· Upper-IntermediateProject Description: We are hiring a Senior Full-Stack Software Developer. Our client team consists of frontend and backend developers, data engineers, data scientists, QA engineers, cloud engineers, and project managers. Responsibilities: β’...Project Description:
We are hiring a Senior Full-Stack Software Developer. Our client team consists of frontend and backend developers, data engineers, data scientists, QA engineers, cloud engineers, and project managers.
Responsibilities:
β’ Participate in requirements clarification and sprint planning sessions.
β’ Design technical solutions and implement them, inc ETL Pipelines - Build robust data pipelines in PySpark to extract, transform, using PySpark
β’ Optimize ETL Processes - Enhance and tune existing ETL processes for better performance, scalability, and reliability
β’ Writing unit and integration tests.
β’ Support QA teammates in the acceptance process.
β’ Resolving PROD incidents as a 3rd line engineer.
Mandatory Skills Description:
* Min 7 Years of experience in IT/Data
* Bachelor in IT or related field.
* Exceptional logical reasoning and problem-solving skills
* Programming: Proficiency in PySpark for distributed computing and Python for ETL development.
* SQL: Strong expertise in writing and optimizing complex SQL queries, preferably with experience in databases such as PostgreSQL, MySQL, Oracle, or Snowflake.
* Data Warehousing: Experience working with data warehousing concepts and platforms, ideally DataBricks
* ETL Tools: Familiarity with ETL tools & processes
* Data Modelling: Experience with dimensional modelling, normalization/denormalization, and schema design.
* Version Control: Proficiency with version control tools like Git to manage codebases and collaborate on development.
* Data Pipeline Monitoring: Familiarity with monitoring tools (e.g., Prometheus, Grafana, or custom monitoring scripts) to track pipeline performance.
* Data Quality Tools: Experience implementing data validation, cleansing, and quality framework
Nice-to-Have Skills Description:
Understanding of Investment Data domain.
-
Β· 17 views Β· 1 application Β· 3d
Senior Data Engineer
Full Remote Β· Ukraine Β· 5 years of experience Β· Upper-IntermediateN-iX is looking for a Senior Data Engineer (with Data Science/MLOps experience) to join our team! Our client: a global biopharmaceutical company. As a Senior Data Engineer, you will play a critical role in designing, developing, and maintaining...N-iX is looking for a Senior Data Engineer (with Data Science/MLOps experience) to join our team!
Our client: a global biopharmaceutical company.
As a Senior Data Engineer, you will play a critical role in designing, developing, and maintaining sophisticated data pipelines, Ontology Objects, and Foundry Functions within Palantir Foundry. Your background in machine learning and data science will be valuable in optimizing data workflows, enabling efficient model deployment, and supporting AI-driven initiatives. The ideal candidate will possess a robust background in cloud technologies, data architecture, and a passion for solving complex data challenges.
Key Responsibilities:
- Collaborate with cross-functional teams to understand data requirements, and design, implement and maintain scalable data pipelines in Palantir Foundry, ensuring end-to-end data integrity and optimizing workflows.
- Gather and translate data requirements into robust and efficient solutions, leveraging your expertise in cloud-based data engineering. Create data models, schemas, and flow diagrams to guide development.
- Develop, implement, optimize and maintain efficient and reliable data pipelines and ETL/ELT processes to collect, process, and integrate data to ensure timely and accurate data delivery to various business applications, while implementing data governance and security best practices to safeguard sensitive information.
- Monitor data pipeline performance, identify bottlenecks, and implement improvements to optimize data processing speed and reduce latency.
- Collaborate with Data Scientists to facilitate model deployment and integration into production environments.
- Support the implementation of basic ML Ops practices, such as model versioning and monitoring.
- Assist in optimizing data pipelines to improve machine learning workflows.
- Troubleshoot and resolve issues related to data pipelines, ensuring continuous data availability and reliability to support data-driven decision-making processes.
Stay current with emerging technologies and industry trends, incorporating innovative solutions into data engineering practices, and effectively document and communicate technical solutions and processes.
Tools and skills you will use in this role:
- Palantir Foundry
- Python
- PySpark
- SQL
TypeScript
Required:
- 5+ years of experience in data engineering, preferably within the pharmaceutical or life sciences industry;
- Strong proficiency in Python and PySpark;
- Proficiency with big data technologies (e.g., Apache Hadoop, Spark, Kafka, BigQuery, etc.);
- Hands-on experience with cloud services (e.g., AWS Glue, Azure Data Factory, Google Cloud Dataflow);
- Expertise in data modeling, data warehousing, and ETL/ELT concepts;
- Hands-on experience with database systems (e.g., PostgreSQL, MySQL, NoSQL, etc.);
- Proficiency in containerization technologies (e.g., Docker, Kubernetes);
- Familiarity with ML Ops concepts, including model deployment and monitoring.
- Basic understanding of machine learning frameworks such as TensorFlow or PyTorch.
- Exposure to cloud-based AI/ML services (e.g., AWS SageMaker, Azure ML, Google Vertex AI).
- Experience working with feature engineering and data preparation for machine learning models.
- Effective problem-solving and analytical skills, coupled with excellent communication and collaboration abilities.
- Strong communication and teamwork abilities;
- Understanding of data security and privacy best practices;
Strong mathematical, statistical, and algorithmic skills.
Nice to have:
- Certification in Cloud platforms, or related areas;
- Experience with search engine Apache Lucene, Web Service Rest API;
- Familiarity with Veeva CRM, Reltio, SAP, and/or Palantir Foundry;
- Knowledge of pharmaceutical industry regulations, such as data privacy laws, is advantageous;
Previous experience working with JavaScript and TypeScript.
We offer*:
- Flexible working format - remote, office-based or flexible
- A competitive salary and good compensation package
- Personalized career growth
- Professional development tools (mentorship program, tech talks and trainings, centers of excellence, and more)
- Active tech communities with regular knowledge sharing
- Education reimbursement
- Memorable anniversary presents
- Corporate events and team buildings
- Other location-specific benefits
*not applicable for freelancers
More -
Β· 14 views Β· 0 applications Β· 2d
Senior Data Engineer (Data Science/MLOps Background)
Full Remote Β· Ukraine Β· 5 years of experience Β· Upper-IntermediateΠur ClΡent Ρs seekΡng Π° prΠΎΠ°ctΡve SenΡΠΎr DΠ°tΠ° EngΡneer tΠΎ jΠΎΡn theΡr teΠ°m. Πs Π° SenΡΠΎr DΠ°tΠ° EngΡneer, yΠΎu wΡll plΠ°y Π° crΡtΡcΠ°l rΠΎle Ρn desΡgnΡng, develΠΎpΡng, Π°nd mΠ°ΡntΠ°ΡnΡng sΠΎphΡstΡcΠ°ted dΠ°tΠ° pΡpelΡnes, ΠntΠΎlΠΎgy Πbjects, Π°nd FΠΎundry FunctΡΠΎns wΡthΡn...Πur ClΡent Ρs seekΡng Π° prΠΎΠ°ctΡve SenΡΠΎr DΠ°tΠ° EngΡneer tΠΎ jΠΎΡn theΡr teΠ°m.
Πs Π° SenΡΠΎr DΠ°tΠ° EngΡneer, yΠΎu wΡll plΠ°y Π° crΡtΡcΠ°l rΠΎle Ρn desΡgnΡng, develΠΎpΡng, Π°nd mΠ°ΡntΠ°ΡnΡng sΠΎphΡstΡcΠ°ted dΠ°tΠ° pΡpelΡnes, ΠntΠΎlΠΎgy Πbjects, Π°nd FΠΎundry FunctΡΠΎns wΡthΡn PΠ°lΠ°ntΡr FΠΎundry.
YΠΎur bΠ°ckgrΠΎund Ρn mΠ°chΡne leΠ°rnΡng Π°nd dΠ°tΠ° scΡence wΡll be vΠ°luΠ°ble Ρn ΠΎptΡmΡzΡng dΠ°tΠ° wΠΎrkflΠΎws, enΠ°blΡng effΡcΡent mΠΎdel deplΠΎyment, Π°nd suppΠΎrtΡng ΠΠ-drΡven ΡnΡtΡΠ°tΡves.
The ΡdeΠ°l cΠ°ndΡdΠ°te wΡll pΠΎssess Π° rΠΎbust bΠ°ckgrΠΎund Ρn clΠΎud technΠΎlΠΎgΡes, dΠ°tΠ° Π°rchΡtecture, Π°nd Π° pΠ°ssΡΠΎn fΠΎr sΠΎlvΡng cΠΎmplex dΠ°tΠ° chΠ°llenges.
Key RespΠΎnsΡbΡlΡtΡes:
- CΠΎllΠ°bΠΎrΠ°te wΡth crΠΎss-functΡΠΎnΠ°l teΠ°ms tΠΎ understΠ°nd dΠ°tΠ° requΡrements, Π°nd desΡgn, Ρmplement Π°nd mΠ°ΡntΠ°Ρn scΠ°lΠ°ble dΠ°tΠ° pΡpelΡnes Ρn PΠ°lΠ°ntΡr FΠΎundry, ensurΡng end-tΠΎ-end dΠ°tΠ° ΡntegrΡty Π°nd ΠΎptΡmΡzΡng wΠΎrkflΠΎws.
- GΠ°ther Π°nd trΠ°nslΠ°te dΠ°tΠ° requΡrements ΡntΠΎ rΠΎbust Π°nd effΡcΡent sΠΎlutΡΠΎns, leverΠ°gΡng yΠΎur expertΡse Ρn clΠΎud-bΠ°sed dΠ°tΠ° engΡneerΡng. CreΠ°te dΠ°tΠ° mΠΎdels, schemΠ°s, Π°nd flΠΎw dΡΠ°grΠ°ms tΠΎ guΡde develΠΎpment.
- DevelΠΎp, Ρmplement, ΠΎptΡmΡze Π°nd mΠ°ΡntΠ°Ρn effΡcΡent Π°nd relΡΠ°ble dΠ°tΠ° pΡpelΡnes Π°nd ETL/ELT prΠΎcesses tΠΎ cΠΎllect, prΠΎcess, Π°nd ΡntegrΠ°te dΠ°tΠ° tΠΎ ensure tΡmely Π°nd Π°ccurΠ°te dΠ°tΠ° delΡvery tΠΎ vΠ°rΡΠΎus busΡness Π°pplΡcΠ°tΡΠΎns, whΡle ΡmplementΡng dΠ°tΠ° gΠΎvernΠ°nce Π°nd securΡty best prΠ°ctΡces tΠΎ sΠ°feguΠ°rd sensΡtΡve ΡnfΠΎrmΠ°tΡΠΎn.
- MΠΎnΡtΠΎr dΠ°tΠ° pΡpelΡne perfΠΎrmΠ°nce, ΡdentΡfy bΠΎttlenecks, Π°nd Ρmplement ΡmprΠΎvements tΠΎ ΠΎptΡmΡze dΠ°tΠ° prΠΎcessΡng speed Π°nd reduce lΠ°tency.
- CΠΎllΠ°bΠΎrΠ°te wΡth DΠ°tΠ° ScΡentΡsts tΠΎ fΠ°cΡlΡtΠ°te mΠΎdel deplΠΎyment Π°nd ΡntegrΠ°tΡΠΎn ΡntΠΎ prΠΎductΡΠΎn envΡrΠΎnments.
- SuppΠΎrt the ΡmplementΠ°tΡΠΎn ΠΎf bΠ°sΡc ML Πps prΠ°ctΡces, such Π°s mΠΎdel versΡΠΎnΡng Π°nd mΠΎnΡtΠΎrΡng.
- ΠssΡst Ρn ΠΎptΡmΡzΡng dΠ°tΠ° pΡpelΡnes tΠΎ ΡmprΠΎve mΠ°chΡne leΠ°rnΡng wΠΎrkflΠΎws.
- TrΠΎubleshΠΎΠΎt Π°nd resΠΎlve Ρssues relΠ°ted tΠΎ dΠ°tΠ° pΡpelΡnes, ensurΡng cΠΎntΡnuΠΎus dΠ°tΠ° Π°vΠ°ΡlΠ°bΡlΡty Π°nd relΡΠ°bΡlΡty tΠΎ suppΠΎrt dΠ°tΠ°-drΡven decΡsΡΠΎn-mΠ°kΡng prΠΎcesses.
- StΠ°y current wΡth emergΡng technΠΎlΠΎgΡes Π°nd Ρndustry trends, ΡncΠΎrpΠΎrΠ°tΡng ΡnnΠΎvΠ°tΡve sΠΎlutΡΠΎns ΡntΠΎ dΠ°tΠ° engΡneerΡng prΠ°ctΡces, Π°nd effectΡvely dΠΎcument Π°nd cΠΎmmunΡcΠ°te technΡcΠ°l sΠΎlutΡΠΎns Π°nd prΠΎcesses.
TΠΎΠΎls Π°nd skΡlls yΠΎu wΡll use Ρn thΡs rΠΎle:
- PΠ°lΠ°ntΡr FΠΎundry
- PythΠΎn
- PySpΠ°rk
- SQL
- TypeScrΡpt
RequΡred:
- 5+ yeΠ°rs ΠΎf experΡence Ρn dΠ°tΠ° engΡneerΡng, preferΠ°bly wΡthΡn the phΠ°rmΠ°ceutΡcΠ°l ΠΎr lΡfe scΡences Ρndustry;
- StrΠΎng prΠΎfΡcΡency Ρn PythΠΎn Π°nd PySpΠ°rk;
- PrΠΎfΡcΡency wΡth bΡg dΠ°tΠ° technΠΎlΠΎgΡes (e.g., ΠpΠ°che HΠ°dΠΎΠΎp, SpΠ°rk, KΠ°fkΠ°, BΡgQuery, etc.);
- HΠ°nds-ΠΎn experΡence wΡth clΠΎud servΡces (e.g., ΠWS Glue, Πzure DΠ°tΠ° FΠ°ctΠΎry, GΠΎΠΎgle ClΠΎud DΠ°tΠ°flΠΎw);
- ExpertΡse Ρn dΠ°tΠ° mΠΎdelΡng, dΠ°tΠ° wΠ°rehΠΎusΡng, Π°nd ETL/ELT cΠΎncepts;
- HΠ°nds-ΠΎn experΡence wΡth dΠ°tΠ°bΠ°se systems (e.g., PΠΎstgreSQL, MySQL, NΠΎSQL, etc.);
- PrΠΎfΡcΡency Ρn cΠΎntΠ°ΡnerΡzΠ°tΡΠΎn technΠΎlΠΎgΡes (e.g., DΠΎcker, Kubernetes);
- FΠ°mΡlΡΠ°rΡty wΡth ML Πps cΠΎncepts, ΡncludΡng mΠΎdel deplΠΎyment Π°nd mΠΎnΡtΠΎrΡng.
- BΠ°sΡc understΠ°ndΡng ΠΎf mΠ°chΡne leΠ°rnΡng frΠ°mewΠΎrks such Π°s TensΠΎrFlΠΎw ΠΎr PyTΠΎrch.
- ExpΠΎsure tΠΎ clΠΎud-bΠ°sed ΠΠ/ML servΡces (e.g., ΠWS SΠ°geMΠ°ker, Πzure ML, GΠΎΠΎgle Vertex ΠΠ).
- ExperΡence wΠΎrkΡng wΡth feΠ°ture engΡneerΡng Π°nd dΠ°tΠ° prepΠ°rΠ°tΡΠΎn fΠΎr mΠ°chΡne leΠ°rnΡng mΠΎdels.
- EffectΡve prΠΎblem-sΠΎlvΡng Π°nd Π°nΠ°lytΡcΠ°l skΡlls, cΠΎupled wΡth excellent cΠΎmmunΡcΠ°tΡΠΎn Π°nd cΠΎllΠ°bΠΎrΠ°tΡΠΎn Π°bΡlΡtΡes.
- StrΠΎng cΠΎmmunΡcΠ°tΡΠΎn Π°nd teΠ°mwΠΎrk Π°bΡlΡtΡes;
- UnderstΠ°ndΡng ΠΎf dΠ°tΠ° securΡty Π°nd prΡvΠ°cy best prΠ°ctΡces;
- StrΠΎng mΠ°themΠ°tΡcΠ°l, stΠ°tΡstΡcΠ°l, Π°nd Π°lgΠΎrΡthmΡc skΡlls.
NΡce tΠΎ hΠ°ve:
- CertΡfΡcΠ°tΡΠΎn Ρn ClΠΎud plΠ°tfΠΎrms, ΠΎr relΠ°ted Π°reΠ°s;
- ExperΡence wΡth seΠ°rch engΡne ΠpΠ°che Lucene, Web ServΡce Rest ΠPΠ;
- FΠ°mΡlΡΠ°rΡty wΡth VeevΠ° CRM, ReltΡΠΎ, SΠP, Π°nd/ΠΎr PΠ°lΠ°ntΡr FΠΎundry;
- KnΠΎwledge ΠΎf phΠ°rmΠ°ceutΡcΠ°l Ρndustry regulΠ°tΡΠΎns, such Π°s dΠ°tΠ° prΡvΠ°cy lΠ°ws, Ρs Π°dvΠ°ntΠ°geΠΎus;
- PrevΡΠΎus experΡence wΠΎrkΡng wΡth JΠ°vΠ°ScrΡpt Π°nd TypeScrΡpt.
CΠΎmpΠ°ny ΠΎffers:
- FlexΡble wΠΎrkΡng fΠΎrmΠ°t β remΠΎte, ΠΎffΡce-bΠ°sed ΠΎr flexΡble
- Π cΠΎmpetΡtΡve sΠ°lΠ°ry Π°nd gΠΎΠΎd cΠΎmpensΠ°tΡΠΎn pΠ°ckΠ°ge
- PersΠΎnΠ°lΡzed cΠ°reer grΠΎwth
- PrΠΎfessΡΠΎnΠ°l develΠΎpment tΠΎΠΎls (mentΠΎrshΡp prΠΎgrΠ°m, tech tΠ°lks Π°nd trΠ°ΡnΡngs, centers ΠΎf excellence, Π°nd mΠΎre)
- ΠctΡve tech cΠΎmmunΡtΡes wΡth regulΠ°r knΠΎwledge shΠ°rΡng
- EducΠ°tΡΠΎn reΡmbursement
- MemΠΎrΠ°ble Π°nnΡversΠ°ry presents
- CΠΎrpΠΎrΠ°te events Π°nd teΠ°m buΡldΡngs
-
Β· 51 views Β· 14 applications Β· 2d
Data Engineer
Countries of Europe or Ukraine Β· Product Β· 1.5 years of experience Β· Pre-IntermediateData Engineer Genesis is a co-founding company that builds global tech businesses with outstanding entrepreneurs from CEE. We are one of the largest global app developers β products from Genesis companies have been downloaded over 300 million times and...Data Engineer
Genesis is a co-founding company that builds global tech businesses with outstanding entrepreneurs from CEE. We are one of the largest global app developers β products from Genesis companies have been downloaded over 300 million times and are used by tens of millions monthly.
Weβre proud to have one of the strongest tech teams in Europe, with our experts regularly recognized among the best IT professionals in CEE and Ukraine.
Weβre looking for a Data Engineer whoβs excited to build something from the ground up and make a real impact on how the Finance team works with data.
Hereβs what your day-to-day will look like:
π Build and Own Our Finance Data Platform. Create and maintain a robust analytical database for the Finance teamβyouβll be the go-to expert for anything data-related.
π€ Collaborate with Stakeholders. Work closely with finance team members and business process owners to understand their data needs and turn them into smart, scalable solutions.
π Design and Launch Data Pipelines. Build reliable data pipelines to pull in data from various sourcesβS3, SQL databases, APIs, Google Sheets, CSVs, and more.
π Manage Data Infrastructure. Ensure our data systems are well-structured, scalable, reliable, and backed up regularly.
π Deliver Reports & Dashboards. Make sure key stakeholders get the right data at the right timeβwhether itβs for regular reports or one-off deep dives.
βοΈ Automate Manual Work. Help move the Finance team away from Excel by automating repetitive tasks and creating a centralized, easy-to-use data platform.
Key Qualifications of the Ideal Candidate:
β Experience:
- 1.5 to 2+ years of hands-on experience in data engineering.
- Experience with financial datasets is a strong advantage, but not required.
π§ SQL Mastery:
- Youβre confident writing complex SQL and working with large-scale datasets.
- You know your way around CTEs, window functions, joins, and indexes.
Youβve optimized queries for performance and helped make data easy to consume for others.
π ETL / ELT Skills:
- Youβve worked with tools like Airflow, Airbyte, or similar for orchestrating data pipelines.
- Youβve set up automated data extraction from sources like S3, SQL databases, APIs, Google Sheets, or CSVs.
- You can build and maintain pipelines that update financial metrics for dashboards.
π οΈ Data Infrastructure & Scripting:
- You have experience maintaining and scaling analytical databases.
You follow good data quality practicesβvalidation, logging, and retries are part of your playbook. - You can write Python scripts for transforming and automating data workflows.
We Offer:
- A comprehensive social package in addition to cash compensation, including a comfortable office in Kyiv, just 5 minutes' walk from Taras Shevchenko metro station.
- Competitive salary and comprehensive benefits such as paid conferences, corporate doctor, medical insurance (for personnel located in Ukraine), and quality food daily (breakfasts and lunches), as well as fresh fruits, snacks, and coffee.
- A dynamic team environment with opportunities for professional growth.
- Exceptional opportunities for professional development, including in-house training sessions and seminars, a corporate library, English classes, and compensation for professional qualification costs after the probationary period.
- Flexible working conditions and a supportive health and sports program.
Ready to shape your future with Genesis?
Connect with us, and let's create the future together!
More
-
Β· 19 views Β· 1 application Β· 2d
Data Engineer TL / Poland
EU Β· 4 years of experience Β· Upper-IntermediateOn behalf with our customer we are seeking for DataOps Team Lead to join our global R&D department. Our customer is an innovative technology company led by data scientists and engineers devoted to mobile app growth. They focus on solving the key...On behalf with our customer we are seeking for DataOps Team Lead to join our global R&D department.
Our customer is an innovative technology company led by data scientists and engineers devoted to mobile app growth. They focus on solving the key challenge of growth for mobile apps by building Machine Learning and Big Data-driven technology that can both accurately predict what apps a user will like and connect them in a compelling way.
We are looking for a data centric quality driven team leader focusing on data process observability. The person is passionate about building high-quality data products and processes as well as supporting production data processes and ad-hoc data requests.
As a Data OPS TL, you will be in charge of the quality of service as well as quality of the data and knowledge platform for all data processes. Youβll be coordinating with stakeholders and play a major role in driving the business by promoting the quality and stability of the data performance and lifecycle and giving the Operational groups immediate abilities to affect the daily business outcomes.Responsibilities:
- Process monitoring - managing and monitoring the daily data processes; troubleshooting server and process issues, escalating bugs and documenting data issues.
- Ad-hoc operation configuration changes - Be the extension of the operation side into the data process; Using Airflow and python scripting alongside SQL to extract specific client relevant data points and calibrate certain aspects of the process.
- Data quality automation - Creating and maintaining data quality tests and validations using python code and testing frameworks.
Metadata store ownership - Creating and maintaining the metadata store; Managing the metadata system which holds meta data of tables, columns, calculations and lineage. Participating in the design and development of the knowledge base metastore and UX. In order to be the pivotal point of contact when needing information on tables, columns and how they are connected. I.e., What is the data source? What is it used for? Why are we calculating this field in this manner?
Requirements:
- Over 2 years in a leadership role within a data team.
- Over 3 years of hands-on experience as a Data Engineer, with strong proficiency in Python and Airflow.
- Solid background in working with both SQL and NoSQL databases and data warehouses, including but not limited to MySQL, Presto, Athena, Couchbase, MemSQL, and MongoDB.
- Bachelorβs degree or higher in Computer Science, Mathematics, Physics, Engineering, Statistics, or a related technical discipline.
- Highly organized with a proactive mindset.
Strong service orientation and a collaborative approach to problem-solving.
Nice to have skills:
- Previous experience as a NOC or DevOps engineer is a plus.
Familiarity with PySpark is considered an advantage.
What we can offer you
- Remote work from Poland, flexible working schedule
- Accounting support & consultation
- Opportunities for learning and developing on the project
- 20 working days of annual vacation
- 5 days paid sick leaves/days off; state holidays
- Provide working equipment
-
Β· 25 views Β· 6 applications Β· 2d
Data Engineer (with Azure)
Full Remote Β· Countries of Europe or Ukraine Β· 2 years of experience Β· Upper-IntermediateWould you like to increase your cloud expertise? Weβre looking for a Data Engineer to join an international cloud technology company. This is a leading Microsoft & Azure partner providing cloud services in Europe and East Asia. Working with different...Would you like to increase your cloud expertise? Weβre looking for a Data Engineer to join an international cloud technology company.
This is a leading Microsoft & Azure partner providing cloud services in Europe and East Asia.
Working with different customer domains + the most professional team β growth! Letβs discuss.
Main Responsibilities:
Data Engineer is responsible for helping select, deploy, and manage the systems and infrastructure required of a data processing pipeline to support customer requirements.
You will work on cutting-edge cloud technologies, including Microsoft Fabric, Azure Synapse Analytics, Apache Spark, Data Lake, Data Bricks, Data Factory, Cosmos DB, HD Insights, Stream Analytics, Event Grid in the implementation projects for corporate clients all over EU, CIS, United Kingdom, Middle East.
Our ideal candidate is a professional passionated with technologies, a curious and self-motivated person.
Responsibilities revolve around DevOps and include implementing ETL pipelines, monitoring/maintaining data pipeline performance, model optimization
Mandatory Requirements:
β 2+ years of experience, ideally within a Data Engineer role.
β understanding of data modeling, data warehousing concepts, and ETL processes
β experience with Azure Cloud technologies
β experience in distributed computing principles and familiarity with key architectures, broad experience across a set of data stores (Azure Data Lake Store, Azure Synapse Analytics, Apache Spark, Azure Data Factory)
β Understanding of landing, staging area, data cleansing, data profiling, data security and data architecture concepts (DWH, Data Lake, Delta Lake/Lakehouse, Datamart)
β SQL-skills
β communication and interpersonal skills
β English βΠ2
β Ukrainian language
Will be beneficial if a candidate has experience in SQL migration from on-premises to cloud, data modernization and migration, advanced analytics projects, and/or professional certification in data&analytics.
We offer:
β professional growth and international certification
β free of charge technical and business trainings and the best bootcamps (worldwide, including HQ Microsoft- Redmond courses)
β innovative data & analytics projects, practical experience with cutting-edge Azure data&analytics technologies at various customersβ projects
β great compensation and individual bonus remuneration
β medical insurance
β long-term employment
β ondividual development plan
More -
Β· 18 views Β· 4 applications Β· 1d
Data Engineer
Full Remote Β· Worldwide Β· 5 years of experience Β· Upper-IntermediateAbout the Role: We are seeking a Senior Data Engineer with deep expertise in distributed data processing and cloud-native architectures. This is a unique opportunity to join a forward-thinking team that values technical excellence, innovation, and...About the Role:
We are seeking a Senior Data Engineer with deep expertise in distributed data processing and cloud-native architectures. This is a unique opportunity to join a forward-thinking team that values technical excellence, innovation, and business impact. You will be responsible for designing, building, and maintaining scalable data solutions that power critical business decisions in a fast-paced B2C environment.
Responsibilities:
- Design, develop, and maintain robust ETL/ELT data pipelines using Apache Spark and AWS Glue
- Build Zero-ETL pipelines using AWS services such as Kinesis Firehose, Lambda, and SageMaker
- Write clean, efficient, and well-tested code primarily in Python and SQL
- Collaborate with data scientists, analysts, and product teams to ensure timely and accurate data delivery
- Optimize data workflows for performance, scalability, and cost-efficiency
- Integrate data from various sources (structured, semi-structured, and unstructured)
- Implement monitoring, alerting, and logging to ensure data pipeline reliability
- Contribute to data governance, documentation, and compliance efforts
- Work in an agile environment, participating in code reviews, sprint planning, and team ceremonies
Expected Qualifications:
- 5+ years of professional experience in data engineering
- Advanced proficiency in Apache Spark, Python, and SQL
- Hands-on experience with AWS Glue, Kinesis Firehose, and Zero-ETL pipelines
- Familiarity with AWS Lambda and SageMaker for serverless processing and ML workflows
- Experience with ETL orchestration tools such as Airflow or dbt
- Solid understanding of cloud computing concepts, especially within AWS
- Strong problem-solving skills and the ability to work independently and collaboratively
- Experience working in B2C companies or data-rich product environments
- Degree in Computer Science or related field (preferred but not required)
- Bonus: Exposure to JavaScript and data science workflows
-
Β· 68 views Β· 7 applications Β· 4d
Data Quality Engineer
Ukraine Β· Product Β· 1 year of experienceΠΠΈ ΡΡΠΊΠ°ΡΠΌΠΎ Data Quality Engineer, ΡΠΊΠΈΠΉ ΠΏΡΠ°Π³Π½Π΅ ΠΏΡΠ°ΡΡΠ²Π°ΡΠΈ Π² Π΄ΠΈΠ½Π°ΠΌΡΡΠ½ΠΎΠΌΡ ΡΠ΅ΡΠ΅Π΄ΠΎΠ²ΠΈΡΡ ΡΠ° ΡΠΎΠ·Π΄ΡΠ»ΡΡ ΡΡΠ½Π½ΠΎΡΡΡ Π²Π·Π°ΡΠΌΠ½ΠΎΡ Π΄ΠΎΠ²ΡΡΠΈ, Π²ΡΠ΄ΠΊΡΠΈΡΠΎΡΡΡ ΡΠ° ΡΠ½ΡΡΡΠ°ΡΠΈΠ²Π½ΠΎΡΡΡ. ΠΡΠΈΠ²Π°ΡΠΠ°Π½ΠΊ- Ρ Π½Π°ΠΉΠ±ΡΠ»ΡΡΠΈΠΌ Π±Π°Π½ΠΊΠΎΠΌ Π£ΠΊΡΠ°ΡΠ½ΠΈ ΡΠ° ΠΎΠ΄Π½ΠΈΠΌ Π· Π½Π°ΠΉΠ±ΡΠ»ΡΡ ΡΠ½Π½ΠΎΠ²Π°ΡΡΠΉΠ½ΠΈΡ Π±Π°Π½ΠΊΡΠ² ΡΠ²ΡΡΡ. ΠΠ°ΠΉΠΌΠ°Ρ Π»ΡΠ΄ΠΈΡΡΡΡΡ...ΠΠΈ ΡΡΠΊΠ°ΡΠΌΠΎ Data Quality Engineer, ΡΠΊΠΈΠΉ ΠΏΡΠ°Π³Π½Π΅ ΠΏΡΠ°ΡΡΠ²Π°ΡΠΈ Π² Π΄ΠΈΠ½Π°ΠΌΡΡΠ½ΠΎΠΌΡ ΡΠ΅ΡΠ΅Π΄ΠΎΠ²ΠΈΡΡ ΡΠ° ΡΠΎΠ·Π΄ΡΠ»ΡΡ ΡΡΠ½Π½ΠΎΡΡΡ Π²Π·Π°ΡΠΌΠ½ΠΎΡ Π΄ΠΎΠ²ΡΡΠΈ, Π²ΡΠ΄ΠΊΡΠΈΡΠΎΡΡΡ ΡΠ° ΡΠ½ΡΡΡΠ°ΡΠΈΠ²Π½ΠΎΡΡΡ.
ΠΡΠΈΠ²Π°ΡΠΠ°Π½ΠΊ- Ρ Π½Π°ΠΉΠ±ΡΠ»ΡΡΠΈΠΌ Π±Π°Π½ΠΊΠΎΠΌ Π£ΠΊΡΠ°ΡΠ½ΠΈ ΡΠ° ΠΎΠ΄Π½ΠΈΠΌ Π· Π½Π°ΠΉΠ±ΡΠ»ΡΡ ΡΠ½Π½ΠΎΠ²Π°ΡΡΠΉΠ½ΠΈΡ Π±Π°Π½ΠΊΡΠ² ΡΠ²ΡΡΡ. ΠΠ°ΠΉΠΌΠ°Ρ Π»ΡΠ΄ΠΈΡΡΡΡΡ ΠΏΠΎΠ·ΠΈΡΡΡ Π·Π° Π²ΡΡΠΌΠ° ΡΡΠ½Π°Π½ΡΠΎΠ²ΠΈΠΌΠΈ ΠΏΠΎΠΊΠ°Π·Π½ΠΈΠΊΠ°ΠΌΠΈ Π² Π³Π°Π»ΡΠ·Ρ ΡΠ° ΡΠΊΠ»Π°Π΄Π°Ρ Π±Π»ΠΈΠ·ΡΠΊΠΎ ΡΠ²Π΅ΡΡΡ Π²ΡΡΡΡ Π±Π°Π½ΠΊΡΠ²ΡΡΠΊΠΎΡ ΡΠΈΡΡΠ΅ΠΌΠΈ ΠΊΡΠ°ΡΠ½ΠΈ.
ΠΠΈ ΠΏΡΠ°Π³Π½Π΅ΠΌΠΎ Π·Π½Π°ΠΉΡΠΈ ΡΡΠ»Π΅ΡΠΏΡΡΠΌΠΎΠ²Π°Π½ΠΎΠ³ΠΎ ΠΏΡΠΎΡΠ΅ΡΡΠΎΠ½Π°Π»Π°, ΡΠΊΠΈΠΉ Π²ΠΌΡΡ ΠΏΡΠ°ΡΡΠ²Π°ΡΠΈ Π² ΡΠ΅ΠΆΠΈΠΌΡ Π±Π°Π³Π°ΡΠΎΠ·Π°Π΄Π°ΡΠ½ΠΎΡΡΡ, ΠΎΡΡΡΠ½ΡΠΎΠ²Π°Π½ΠΎΠ³ΠΎ Π½Π° ΡΠΊΡΡΡΡ ΡΠ° ΡΠ΅Π·ΡΠ»ΡΡΠ°Ρ.
ΠΡΠΎ ΠΏΡΠΎΠ΅ΠΊΡ: ΠΊΠΎΠΌΠ°Π½Π΄Π° Π·Π°ΠΉΠΌΠ°ΡΡΡΡΡ ΠΏΠΎΠ±ΡΠ΄ΠΎΠ²ΠΎΡ ΡΡΡΠ°ΡΠ½ΠΈΡ ΠΏΡΠΎΡΠ΅ΡΡΠ² Π·Π°Π±Π΅Π·ΠΏΠ΅ΡΠ΅Π½Π½Ρ ΡΠ° ΠΊΠΎΠ½ΡΡΠΎΠ»Ρ ΡΠΊΠΎΡΡΡ Π΄Π°Π½ΠΈΡ Π² ΠΊΠΎΠΌΠΏΠ°Π½ΡΡ Π½Π°ΠΏΡΠ°Π²Π»Π΅Π½ΠΈΡ Π½Π° ΠΏΠΎΠΊΡΠ°ΡΠ΅Π½Π½Ρ ΠΏΡΠΎΡΠ΅ΡΡΡΠ² ΠΏΡΠΈΠΉΠ½ΡΡΡΡ ΡΡΡΠ΅Π½Ρ Π½Π° ΠΎΡΠ½ΠΎΠ²Ρ Π΄Π°Π½ΠΈΡ ΡΠ° ΠΏΠΎΠΊΡΠ°ΡΠ΅Π½Π½Ρ ΡΠΊΠΎΡΡΡ digital-ΡΠ΅ΡΠ²ΡΡΡΠ².
ΠΡΠ½ΠΎΠ²Π½Ρ ΠΎΠ±ΠΎΠ²βΡΠ·ΠΊΠΈ:
- ΠΡΠΎΠ΅ΠΊΡΡΠ²Π°Π½Π½Ρ, ΡΠ΅Π°Π»ΡΠ·Π°ΡΡΡ ΡΠ° ΡΠΌΠΏΠ»Π΅ΠΌΠ΅Π½ΡΠ°ΡΡΡ ΠΏΡΠΎΡΠ΅ΡΡΠ² Ρ ΠΏΡΠΎΡΠ΅Π΄ΡΡ Π΄Π»Ρ Π·Π±ΠΎΡΡ, Π·Π±Π΅ΡΡΠ³Π°Π½Π½Ρ, Π²ΠΈΠΊΠΎΡΠΈΡΡΠ°Π½Π½Ρ ΡΠ° Π±Π΅Π·ΠΏΠ΅ΠΊΠΈ Π΄Π°Π½ΠΈΡ
- ΠΠΈΠ·Π½Π°ΡΠ΅Π½Π½Ρ ΡΡΡΠΏΠ΅Π½Ρ Π΄ΠΎΠ²ΡΡΠΈ Π΄ΠΎ Π΄ΠΆΠ΅ΡΠ΅Π» Π΄Π°Π½ΠΈΡ
- ΠΠ°Π±Π΅Π·ΠΏΠ΅ΡΠ΅Π½Π½Ρ Ρ Π³Π°ΡΠ°Π½ΡΡΡ ΡΠΊΠΎΡΡΡ ΠΊΠΎΡΠΏΠΎΡΠ°ΡΠΈΠ²Π½ΠΈΡ Π΄Π°Π½ΠΈΡ
- ΠΠΎΠΊΡΠΌΠ΅Π½ΡΡΠ²Π°Π½Π½Ρ ΡΠ° Π·Π°Π±Π΅Π·ΠΏΠ΅ΡΠ΅Π½Π½Ρ Π΄ΠΎΡΡΠΈΠΌΠ°Π½Π½Ρ ΠΏΡΠ°Π²ΠΈΠ» Π·Π±ΠΎΡΡ, Π·Π±Π΅ΡΡΠ³Π°Π½Π½Ρ Ρ Π²ΠΈΠΊΠΎΡΠΈΡΡΠ°Π½Π½Ρ Π΄Π°Π½ΠΈΡ
- ΠΠΎΠ½ΡΡΠΎΠ»Ρ Ρ Π²ΡΠ΄ΠΏΡΠ°ΡΡΠ²Π°Π½Π½Ρ ΡΠ½ΡΠΈΠ΄Π΅Π½ΡΡΠ², ΠΏΠΎΠ²βΡΠ·Π°Π½ΠΈΡ Π· ΡΠΊΡΡΡΡ Π΄Π°Π½ΠΈΡ .
ΠΡΠ½ΠΎΠ²Π½Ρ Π²ΠΈΠΌΠΎΠ³ΠΈ:
- ΠΠΈΡΠ° ΡΠ΅Ρ Π½ΡΡΠ½Π° ΠΎΡΠ²ΡΡΠ°
- ΠΠΎΡΠ²ΡΠ΄ ΡΠΎΠ±ΠΎΡΠΈ Π² Data Π΄ΠΎΠΌΠ΅Π½Ρ Π±ΡΠ»ΡΡΠ΅ 2 ΡΠΎΠΊΡΠ²
- ΠΠΎΡΠ²ΡΠ΄ ΡΠΎΠ±ΠΎΡΠΈ Π² Π±Π°Π½ΠΊΠΎΠ²ΡΠΉ ΡΡΠ΅ΡΡ
- ΠΠΎΡΠ²ΡΠ΄ ΡΠΎΠ±ΠΎΡΠΈ Π· Π²Π΅Π»ΠΈΠΊΠΈΠΌΠΈ ΠΌΠ°ΡΠΈΠ²Π°ΠΌΠΈ Π΄Π°Π½ΠΈΡ
- ΠΠΎΡΠ²ΡΠ΄ ΡΠΎΠ±ΠΎΡΠΈ Π· SQL
- Π ΠΎΠ·ΡΠΌΡΠ½Π½Ρ ΡΠ΅ΠΎΡΡΡ Π±Π°Π· Π΄Π°Π½ΠΈΡ (SQL, NoSQL, NewSQL);
- ΠΠ½Π°Π½Π½Ρ ΠΎΡΠ½ΠΎΠ² ΠΏΡΠΎΠ΅ΠΊΡΡΠ²Π°Π½Π½Ρ Ρ ΡΠΎΠ±ΠΎΡΠΈ Π· ΠΊΠΎΡΠΏΠΎΡΠ°ΡΠΈΠ²Π½ΠΈΠΌΠΈ ΡΡ ΠΎΠ²ΠΈΡΠ°ΠΌΠΈ Ρ ΠΎΠ·Π΅ΡΠ°ΠΌΠΈ Π΄Π°Π½Π½ΡΡ (Data WareHouse, Data Lake), Π° ΡΠ°ΠΊΠΎΠΆ ETL / ELT-ΠΏΡΠΎΡΠ΅ΡΡΠ°ΠΌΠΈ;
ΠΡΠ΄Π΅ ΠΏΠ»ΡΡΠΎΠΌ:
- ΠΠΎΡΠ²ΡΠ΄ ΡΠΎΠ±ΠΎΡΠΈ Π· Big DataΠ‘Π²ΠΎΡΠΌ ΡΠΏΡΠ²ΡΠΎΠ±ΡΡΠ½ΠΈΠΊΠ°ΠΌ ΠΌΠΈ ΠΏΡΠΎΠΏΠΎΠ½ΡΡΠΌΠΎ:
- Π ΠΎΠ±ΠΎΡΡ Π² Π½Π°ΠΉΠ±ΡΠ»ΡΡΠΎΠΌΡ ΡΠ° ΡΠ½Π½ΠΎΠ²Π°ΡΡΠΉΠ½ΠΎΠΌΡ Π±Π°Π½ΠΊΡ Π£ΠΊΡΠ°ΡΠ½ΠΈ
- ΠΡΡΡΡΠΉΠ½Π΅ ΠΏΡΠ°ΡΠ΅Π²Π»Π°ΡΡΡΠ²Π°Π½Π½Ρ ΡΠ° 24 ΠΊΠ°Π»Π΅Π½Π΄Π°ΡΠ½ΠΈΡ Π΄Π½Ρ Π²ΡΠ΄ΠΏΡΡΡΠΊΠΈ
- ΠΠΎΠ½ΠΊΡΡΠ΅Π½ΡΠ½Ρ Π·Π°ΡΠΎΠ±ΡΡΠ½Ρ ΠΏΠ»Π°ΡΡ
- ΠΠ΅Π΄ΠΈΡΠ½Π΅ ΡΡΡΠ°Ρ ΡΠ²Π°Π½Π½Ρ ΡΠ° ΠΊΠΎΡΠΏΠΎΡΠ°ΡΠΈΠ²Π½ΠΈΠΉ ΠΌΠΎΠ±ΡΠ»ΡΠ½ΠΈΠΉ Π·Π²βΡΠ·ΠΎΠΊ
- ΠΠΎΡΠΏΠΎΡΠ°ΡΠΈΠ²Π½Π΅ Π½Π°Π²ΡΠ°Π½Π½Ρ
- Π‘ΡΡΠ°ΡΠ½ΠΈΠΉ ΠΊΠΎΠΌΡΠΎΡΡΠ½ΠΈΠΉ ΠΎΡΡΡ
- Π¦ΡΠΊΠ°Π²Ρ ΠΏΡΠΎΡΠΊΡΠΈ, Π°ΠΌΠ±ΡΡΡΠΉΠ½Ρ Π·Π°Π΄Π°ΡΡ ΡΠ° Π΄ΠΈΠ½Π°ΠΌΡΡΠ½ΠΈΠΉ ΡΠΎΠ·Π²ΠΈΡΠΎΠΊ
More -
Β· 60 views Β· 12 applications Β· 5d
Middle/Senior Data Engineer
Countries of Europe or Ukraine Β· Product Β· 2 years of experienceΠΡΠΎ ΡΠ΅Π±Π΅: β Π²ΡΠ΄ΡΡΠ²Π°ΡΡ ΡΠ΅Π±Π΅ Π² ΡΠΎΠ·ΡΠΎΠ±ΡΡ Π±Π°Π· Π΄Π°Π½ΠΈΡ ΡΠΊ ΡΠΈΠ±Π° Π² Π²ΠΎΠ΄Ρ β Π·Π½Π°ΡΡ ΠΎΡΠΎΠ±Π»ΠΈΠ²ΠΎΡΡΡ ΠΏΡΠΎΡΠΊΡΡΠ²Π°Π½Π½Ρ Π±Π°Π· Π΄Π°Π½ΠΈΡ (OLTP, OLAP) β ΠΏΡΠ°ΡΡΡΡ Π· ClickHouse, PostgreSQL, mongoDB β ΡΠ· SQL Π½Π° Β«ΡΠΈΒ» β ΠΌΠ°ΡΡ Π΄ΠΎΡΠ²ΡΠ΄ ΡΠΎΠ·ΡΠΎΠ±ΠΊΠΈ (ETL/ELT)-ΠΏΡΠΎΡΠ΅ΡΡΠ² β ΡΠ°ΡΠΈΡ Ρ ΡΠΎΠ·ΡΠΎΠ±ΡΡ Π·Π° Π΄ΠΎΠΏΠΎΠΌΠΎΠ³ΠΎΡ...ΠΡΠΎ ΡΠ΅Π±Π΅:
β Π²ΡΠ΄ΡΡΠ²Π°ΡΡ ΡΠ΅Π±Π΅ Π² ΡΠΎΠ·ΡΠΎΠ±ΡΡ Π±Π°Π· Π΄Π°Π½ΠΈΡ ΡΠΊ ΡΠΈΠ±Π° Π² Π²ΠΎΠ΄Ρ
β Π·Π½Π°ΡΡ ΠΎΡΠΎΠ±Π»ΠΈΠ²ΠΎΡΡΡ ΠΏΡΠΎΡΠΊΡΡΠ²Π°Π½Π½Ρ Π±Π°Π· Π΄Π°Π½ΠΈΡ (OLTP, OLAP)
β ΠΏΡΠ°ΡΡΡΡ Π· ClickHouse, PostgreSQL, mongoDB
β ΡΠ· SQL Π½Π° Β«ΡΠΈΒ»
β ΠΌΠ°ΡΡ Π΄ΠΎΡΠ²ΡΠ΄ ΡΠΎΠ·ΡΠΎΠ±ΠΊΠΈ (ETL/ELT)-ΠΏΡΠΎΡΠ΅ΡΡΠ²
β ΡΠ°ΡΠΈΡ Ρ ΡΠΎΠ·ΡΠΎΠ±ΡΡ Π·Π° Π΄ΠΎΠΏΠΎΠΌΠΎΠ³ΠΎΡ BI-Π·Π°ΡΠΎΠ±ΡΠ²
ΠΠΎΠ΄Π°ΡΠΊΠΎΠ²ΠΎ Π·Π°ΡΡΠ½ΠΈΠΌΠΎ:β ΡΠΎΠ·ΡΠΌΡΠ½Π½Ρ ΡΡΠ»Π΅ΠΉ Ρ Π·Π°Π²Π΄Π°Π½Ρ Π±ΡΠ·Π½Π΅Ρ-ΠΏΡΠ΄ΡΠΎΠ·Π΄ΡΠ»Ρ, ΠΎΡΡΡΠ½ΡΠ°ΡΡΡ Π½Π° ΡΡ Π½ΡΠΉ ΡΠ΅Π·ΡΠ»ΡΡΠ°Ρ
β Π±Π°Π·ΠΎΠ²Π΅ ΡΠΎΠ·ΡΠΌΡΠ½Π½Ρ ΡΡΠ»Π΅ΠΉ, Π·Π°Π²Π΄Π°Π½Ρ Ρ ΠΏΡΠΎΡΠ΅ΡΡ ΠΌΠΎΠ΄Π΅Π»ΡΠ²Π°Π½Π½ΡΠΡΠ΄ ΡΠ΅Π±Π΅ Π³Π°ΡΠ°Π½ΡΡΡΠΌΠΎ:
- Π³ΡΠ΄Π½Ρ Π²ΠΈΠ½Π°Π³ΠΎΡΠΎΠ΄Ρ ΡΠ° ΡΡ ΡΠ΅Π³ΡΠ»ΡΡΠ½ΠΈΠΉ ΠΏΠ΅ΡΠ΅Π³Π»ΡΠ΄ Π·Π° ΡΠ΅Π·ΡΠ»ΡΡΠ°ΡΠ°ΠΌΠΈ
- Π³Π½ΡΡΠΊΠΈΠΉ Π³ΡΠ°ΡΡΠΊ ΡΠΎΠ±ΠΎΡΠΈ Π±Π΅Π· ΡΡΠ΅ΠΊΠ΅ΡΡΠ² Ρ ΠΏΠ°ΡΠ°Π½ΠΎΡ
- ΠΌΠΎΠΆΠ»ΠΈΠ²ΡΡΡΡ Π³ΡΠ±ΡΠΈΠ΄Π½ΠΎΡ ΡΠΎΠ±ΠΎΡΠΈ ΡΠΈ ΠΏΠΎΠ²Π½ΡΡΡΡ Π²ΡΠ΄Π΄Π°Π»Π΅Π½ΠΎ
- Π²ΡΠ΄ΠΏΡΡΡΠΊΡ 18 ΡΠΎΠ±ΠΎΡΠΈΡ Π΄Π½ΡΠ² Π½Π° ΡΡΠΊ (ΡΠΈ 24 ΠΊΠ°Π»Π΅Π½Π΄Π°ΡΠ½ΠΈΡ ) + 2 Π΄Π½Ρ Π΄Π»Ρ ΡΠΎΡΡ-ΠΌΠ°ΠΆΠΎΡΡΠ² + 6 Π΄Π½ΡΠ² Π΄Π»Ρ Π½Π°Π²ΡΠ°Π½Π½Ρ
- ΠΎΠΏΠ»Π°ΡΡΠ²Π°Π½Ρ Π΄Π΅ΠΉ-ΠΎΡΠΈ Π·Π° ΡΡΠ°Π½ΠΎΠΌ Π·Π΄ΠΎΡΠΎΠ²βΡ β Π±Π΅Π· SMS Ρ Π»ΡΠΊΠ°ΡΠ½ΡΠ½ΠΈΡ Π»ΠΈΡΡΡΠ²
- ΠΊΠΎΡΠΏΠΎΡΠ°ΡΠΈΠ²Π½Ρ ΠΊΡΡΡΠΈ ΡΠ½Π³Π»ΡΡΡ
- 100% ΡΡΡΠ°Ρ ΡΠ²Π°Π½Π½Ρ Π·Π΄ΠΎΡΠΎΠ²βΡ + ΠΏΡΠ΄ΡΡΠΈΠΌΠΊΠ° ΠΌΠ΅Π½ΡΠ°Π»ΠΎΡΠΊΠΈ
- ΠΊΠ°ΡΡΠΊΡ Platinum Π²ΡΠ΄ monobank Ρ ΠΏΡΠ½Π΄ΠΈΠΊΠΈ Π²ΡΠ΄ Π½Π°ΡΠΈΡ ΠΏΠ°ΡΡΠ½Π΅ΡΡΠ²
πΊπ¦ ΠΡΠ΄ΡΡΠΈΠΌΡΡΠΌΠΎ ΡΠΈΠ»ΠΈ ΠΎΠ±ΠΎΡΠΎΠ½ΠΈ Π£ΠΊΡΠ°ΡΠ½ΠΈ Π²Π»Π°ΡΠ½ΠΈΠΌΠΈ Π·Π±ΠΎΡΠ°ΠΌΠΈ, ΡΠΎΠ·Π²ΠΈΠ²Π°ΡΠΌΠΎ ΠΊΡΠ»ΡΡΡΡΡ Π΄ΠΎΠ½Π°ΡΠ΅ΡΡΡΠ²Π°.ΠΡΠΎΡΠ΅Ρ:
πΎ Π·Π½Π°ΠΉΠΎΠΌΡΡΠ²ΠΎ Π· ΡΠ΅ΠΊΡΡΡΠ΅ΡΠΊΠΎΡ β ΡΠ΅Ρ Π½ΡΡΠ½Π° ΡΠΏΡΠ²Π±Π΅ΡΡΠ΄Π° β ΠΏΡΠΎΠΏΠΎΠ·ΠΈΡΡΡ πΎ
More -
Β· 97 views Β· 2 applications Β· 12d
Strong Junior Data Engineer
Worldwide Β· 1 year of experience Β· IntermediateDataforest Π² ΠΏΠΎΡΡΠΊΡ Π²ΠΌΠΎΡΠΈΠ²ΠΎΠ²Π°Π½ΠΎΠ³ΠΎ Π½Π° ΡΠΎΠ·Π²ΠΈΡΠΎΠΊ Data Engineer, ΡΠΊΠΈΠΉ ΡΡΠ°Π½Π΅ ΡΠ°ΡΡΠΈΠ½ΠΎΡ Π½Π°ΡΠΎΡ Π΄ΡΡΠΆΠ½ΡΠΎΡ ΠΊΠΎΠΌΠ°Π½Π΄ΠΈ. Π―ΠΊ Data Engineer, ΡΠΈ Π±ΡΠ΄Π΅Ρ ΡΠΎΠ·Π²'ΡΠ·ΡΠ²Π°ΡΠΈ ΡΡΠΊΠ°Π²Ρ Π·Π°Π΄Π°ΡΡ, Π²ΠΈΠΊΠΎΡΠΈΡΡΠΎΠ²ΡΡΡΠΈ ΠΏΠ΅ΡΠ΅Π΄ΠΎΠ²Ρ ΡΠ΅Ρ Π½ΠΎΠ»ΠΎΠ³ΡΡ Π·Π±ΠΎΡΡ, ΠΎΠ±ΡΠΎΠ±ΠΊΠΈ, Π°Π½Π°Π»ΡΠ·Ρ ΡΠ° ΠΌΠΎΠ½ΡΡΠΎΡΠΈΠ½Π³Ρ Π΄Π°Π½ΠΈΡ . Π―ΠΊΡΠΎ ΡΠΈ Π½Π΅...Dataforest Π² ΠΏΠΎΡΡΠΊΡ Π²ΠΌΠΎΡΠΈΠ²ΠΎΠ²Π°Π½ΠΎΠ³ΠΎ Π½Π° ΡΠΎΠ·Π²ΠΈΡΠΎΠΊ Data Engineer, ΡΠΊΠΈΠΉ ΡΡΠ°Π½Π΅ ΡΠ°ΡΡΠΈΠ½ΠΎΡ Π½Π°ΡΠΎΡ Π΄ΡΡΠΆΠ½ΡΠΎΡ ΠΊΠΎΠΌΠ°Π½Π΄ΠΈ. Π―ΠΊ Data Engineer, ΡΠΈ Π±ΡΠ΄Π΅Ρ ΡΠΎΠ·Π²'ΡΠ·ΡΠ²Π°ΡΠΈ ΡΡΠΊΠ°Π²Ρ Π·Π°Π΄Π°ΡΡ, Π²ΠΈΠΊΠΎΡΠΈΡΡΠΎΠ²ΡΡΡΠΈ ΠΏΠ΅ΡΠ΅Π΄ΠΎΠ²Ρ ΡΠ΅Ρ Π½ΠΎΠ»ΠΎΠ³ΡΡ Π·Π±ΠΎΡΡ, ΠΎΠ±ΡΠΎΠ±ΠΊΠΈ, Π°Π½Π°Π»ΡΠ·Ρ ΡΠ° ΠΌΠΎΠ½ΡΡΠΎΡΠΈΠ½Π³Ρ Π΄Π°Π½ΠΈΡ .
Π―ΠΊΡΠΎ ΡΠΈ Π½Π΅ Π±ΠΎΡΡΡΡ Π²ΠΈΠΊΠ»ΠΈΠΊΡΠ², ΡΡ Π²Π°ΠΊΠ°Π½ΡΡΡ ΡΠ°ΠΌΠ΅ Π΄Π»Ρ ΡΠ΅Π±Π΅!
ΠΠ°ΠΌ Π²Π°ΠΆΠ»ΠΈΠ²ΠΎ:
β’ ΠΠΎΡΠ²ΡΠ΄ ΡΠΎΠ±ΠΎΡΠΈ ΡΠΊ Data Engineer β 1+ ΡΡΠΊ;
β’ ΠΠΎΡΠ²ΡΠ΄ ΡΠΎΠ±ΠΎΡΠΈ Π· Python;
β’ ΠΠΎΡΠ²ΡΠ΄ ΡΠΎΠ±ΠΎΡΠΈ Π· Databricks ΡΠ° Datafactory;
β’ ΠΠΎΡΠ²ΡΠ΄ ΡΠΎΠ±ΠΎΡΠΈ Π· AWS/Azure;β’ ΠΠΎΡΠ²ΡΠ΄ ΡΠΎΠ±ΠΎΡΠΈ Π· ETL / ELT pipelines;
β’ ΠΠΎΡΠ²ΡΠ΄ ΡΠΎΠ±ΠΎΡΠΈ Π· SQL.
ΠΠ±ΠΎΠ²'ΡΠ·ΠΊΠΈ:
β’ Π‘ΡΠ²ΠΎΡΠ΅Π½Π½Ρ ETL/ELT pipelines ΡΠ° ΡΡΡΠ΅Π½Ρ Π΄Π»Ρ ΡΠΏΡΠ°Π²Π»ΡΠ½Π½Ρ Π΄Π°Π½ΠΈΠΌΠΈ;
β’ ΠΠ°ΡΡΠΎΡΡΠ²Π°Π½Π½Ρ Π°Π»Π³ΠΎΡΠΈΡΠΌΡΠ² ΠΎΠ±ΡΠΎΠ±ΠΊΠΈ Π΄Π°Π½ΠΈΡ ;
β’ Π ΠΎΠ±ΠΎΡΠ° Π· SQL-Π·Π°ΠΏΠΈΡΠ°ΠΌΠΈ Π΄Π»Ρ Π²ΠΈΠ΄ΠΎΠ±ΡΡΠΊΡ ΡΠ° Π°Π½Π°Π»ΡΠ·Ρ Π΄Π°Π½ΠΈΡ ;
β’ ΠΠ½Π°Π»ΡΠ· Π΄Π°Π½ΠΈΡ ΡΠ° Π²ΠΈΠΊΠΎΡΠΈΡΡΠ°Π½Π½Ρ Π°Π»Π³ΠΎΡΠΈΡΠΌΡΠ² ΠΎΠ±ΡΠΎΠ±ΠΊΠΈ Π΄Π°Π½ΠΈΡ Π΄Π»Ρ Π²ΠΈΡΡΡΠ΅Π½Π½Ρ Π±ΡΠ·Π½Π΅Ρ-ΠΏΡΠΎΠ±Π»Π΅ΠΌ;
ΠΠΈ ΠΏΡΠΎΠΏΠΎΠ½ΡΡΠΌΠΎ:
β’ Π ΠΎΠ±ΠΎΡΠ° Π· high-skilled engineering team Π½Π°Π΄ ΡΡΠΊΠ°Π²ΠΈΠΌΠΈ ΡΠ° ΡΠΊΠ»Π°Π΄Π½ΠΈΠΌΠΈ ΠΏΡΠΎΡΠΊΡΠ°ΠΌΠΈ;
β’ ΠΠΈΠ²ΡΠ΅Π½Π½Ρ Π½ΠΎΠ²ΡΡΠ½ΡΡ ΡΠ΅Ρ Π½ΠΎΠ»ΠΎΠ³ΡΠΉ;
β’ Π‘ΠΏΡΠ»ΠΊΡΠ²Π°Π½Π½Ρ Π· ΡΠ½ΠΎΠ·Π΅ΠΌΠ½ΠΈΠΌΠΈ ΠΊΠ»ΡΡΠ½ΡΠ°ΠΌΠΈ, ΡΠ΅Π»Π΅Π½ΠΆΠΎΠ²Ρ Π·Π°Π²Π΄Π°Π½Π½Ρ;
β’ ΠΠΎΠΆΠ»ΠΈΠ²ΠΎΡΡΡ ΠΎΡΠΎΠ±ΠΈΡΡΠΎΠ³ΠΎ Ρ ΠΏΡΠΎΡΠ΅ΡΡΠΉΠ½ΠΎΠ³ΠΎ ΡΠΎΠ·Π²ΠΈΡΠΊΡ;
β’ ΠΠΎΠ½ΠΊΡΡΠ΅Π½ΡΠΎΡΠΏΡΠΎΠΌΠΎΠΆΠ½Π° Π·Π°ΡΠΏΠ»Π°ΡΠ°, ΡΡΠΊΡΠΎΠ²Π°Π½Π° Π² USD;
β’ ΠΠΏΠ»Π°ΡΡΠ²Π°Π½Π° Π²ΡΠ΄ΠΏΡΡΡΠΊΠ° Ρ Π»ΡΠΊΠ°ΡΠ½ΡΠ½Ρ;
β’ ΠΠ½ΡΡΠΊΠΈΠΉ Π³ΡΠ°ΡΡΠΊ ΡΠΎΠ±ΠΎΡΠΈ;
β’ ΠΡΡΠΆΠ½Ρ ΡΠΎΠ±ΠΎΡΠ° Π°ΡΠΌΠΎΡΡΠ΅ΡΠ° Π±Π΅Π· Π±ΡΡΠΎΠΊΡΠ°ΡΠΈΠ·ΠΌΡ;
β’ Π£ Π½Π°Ρ Π±Π°Π³Π°ΡΠΎ ΡΡΠ°Π΄ΠΈΡΡΠΉ β ΠΊΠΎΡΠΏΠΎΡΠ°ΡΠΈΠ²ΠΈ, ΡΠΈΠΌΠ±ΡΠ»Π΄ΠΈΠ½Π³ΠΈ ΡΠ° ΡΠ΅ΠΌΠ°ΡΠΈΡΠ½Ρ Π·Π°Ρ ΠΎΠ΄ΠΈ ΡΠ° Π±Π°Π³Π°ΡΠΎ ΡΠ½ΡΠΎΠ³ΠΎ!
Π―ΠΊΡΠΎ Π½Π°ΡΠ° Π²Π°ΠΊΠ°Π½ΡΡΡ ΡΠΎΠ±Ρ Π΄ΠΎ Π΄ΡΡΡ, ΡΠΎΠ΄Ρ Π²ΡΠ΄ΠΏΡΠ°Π²Π»ΡΠΉ ΡΠ²ΠΎΡ ΡΠ΅Π·ΡΠΌΠ΅ - Ρ ΡΡΠ°Π²Π°ΠΉ ΡΠ°ΡΡΠΈΠ½ΠΎΡ Π½Π°ΡΠΎΡ ΠΊΠΎΠΌΠ°Π½Π΄ΠΈ.
More -
Β· 27 views Β· 0 applications Β· 18d
MongoDB Database Engineer
Full Remote Β· Ukraine Β· Product Β· 3 years of experience Β· Beginner/ElementaryΠΠΈ ΡΡΠΊΠ°ΡΠΌΠΎ MongoDB Database Engineer, ΡΠΊΠΈΠΉ ΠΏΡΠ°Π³Π½Π΅ ΠΏΡΠ°ΡΡΠ²Π°ΡΠΈ Π² Π΄ΠΈΠ½Π°ΠΌΡΡΠ½ΠΎΠΌΡ ΡΠ΅ΡΠ΅Π΄ΠΎΠ²ΠΈΡΡ ΡΠ° ΡΠΎΠ·Π΄ΡΠ»ΡΡ ΡΡΠ½Π½ΠΎΡΡΡ Π²Π·Π°ΡΠΌΠ½ΠΎΡ Π΄ΠΎΠ²ΡΡΠΈ, Π²ΡΠ΄ΠΊΡΠΈΡΠΎΡΡΡ ΡΠ° ΡΠ½ΡΡΡΠ°ΡΠΈΠ²Π½ΠΎΡΡΡ. ΠΡΠΈΠ²Π°ΡΠΠ°Π½ΠΊ β Ρ Π½Π°ΠΉΠ±ΡΠ»ΡΡΠΈΠΌ Π±Π°Π½ΠΊΠΎΠΌ Π£ΠΊΡΠ°ΡΠ½ΠΈ ΡΠ° ΠΎΠ΄Π½ΠΈΠΌ Π· Π½Π°ΠΉΠ±ΡΠ»ΡΡ ΡΠ½Π½ΠΎΠ²Π°ΡΡΠΉΠ½ΠΈΡ Π±Π°Π½ΠΊΡΠ² ΡΠ²ΡΡΡ. ΠΠ°ΠΉΠΌΠ°Ρ...ΠΠΈ ΡΡΠΊΠ°ΡΠΌΠΎ MongoDB Database Engineer, ΡΠΊΠΈΠΉ ΠΏΡΠ°Π³Π½Π΅ ΠΏΡΠ°ΡΡΠ²Π°ΡΠΈ Π² Π΄ΠΈΠ½Π°ΠΌΡΡΠ½ΠΎΠΌΡ ΡΠ΅ΡΠ΅Π΄ΠΎΠ²ΠΈΡΡ ΡΠ° ΡΠΎΠ·Π΄ΡΠ»ΡΡ ΡΡΠ½Π½ΠΎΡΡΡ Π²Π·Π°ΡΠΌΠ½ΠΎΡ Π΄ΠΎΠ²ΡΡΠΈ, Π²ΡΠ΄ΠΊΡΠΈΡΠΎΡΡΡ ΡΠ° ΡΠ½ΡΡΡΠ°ΡΠΈΠ²Π½ΠΎΡΡΡ.
ΠΡΠΈΠ²Π°ΡΠΠ°Π½ΠΊ β Ρ Π½Π°ΠΉΠ±ΡΠ»ΡΡΠΈΠΌ Π±Π°Π½ΠΊΠΎΠΌ Π£ΠΊΡΠ°ΡΠ½ΠΈ ΡΠ° ΠΎΠ΄Π½ΠΈΠΌ Π· Π½Π°ΠΉΠ±ΡΠ»ΡΡ ΡΠ½Π½ΠΎΠ²Π°ΡΡΠΉΠ½ΠΈΡ Π±Π°Π½ΠΊΡΠ² ΡΠ²ΡΡΡ. ΠΠ°ΠΉΠΌΠ°Ρ Π»ΡΠ΄ΡΡΡΡ ΠΏΠΎΠ·ΠΈΡΡΡ Π·Π° Π²ΡΡΠΌΠ° ΡΡΠ½Π°Π½ΡΠΎΠ²ΠΈΠΌΠΈ ΠΏΠΎΠΊΠ°Π·Π½ΠΈΠΊΠ°ΠΌΠΈ Π² Π³Π°Π»ΡΠ·Ρ ΡΠ° ΡΠΊΠ»Π°Π΄Π°Ρ Π±Π»ΠΈΠ·ΡΠΊΠΎ ΡΠ²Π΅ΡΡΡ Π²ΡΡΡΡ Π±Π°Π½ΠΊΡΠ²ΡΡΠΊΠΎΡ ΡΠΈΡΡΠ΅ΠΌΠΈ ΠΊΡΠ°ΡΠ½ΠΈ.
ΠΠΈ ΠΏΡΠ°Π³Π½Π΅ΠΌΠΎ Π·Π½Π°ΠΉΡΠΈ ΡΡΠ»Π΅ΡΠΏΡΡΠΌΠΎΠ²Π°Π½ΠΎΠ³ΠΎ ΠΏΡΠΎΡΠ΅ΡΡΠΎΠ½Π°Π»Π°, ΡΠΊΠΈΠΉ Π²ΠΌΡΡ ΠΏΡΠ°ΡΡΠ²Π°ΡΠΈ Π² ΡΠ΅ΠΆΠΈΠΌΡ Π±Π°Π³Π°ΡΠΎΠ·Π°Π΄Π°ΡΠ½ΠΎΡΡΡ, ΠΎΡΡΡΠ½ΡΠΎΠ²Π°Π½ΠΎΠ³ΠΎ Π½Π° ΡΠΊΡΡΡΡ ΡΠ° ΡΠ΅Π·ΡΠ»ΡΡΠ°Ρ.
ΠΡΠ½ΠΎΠ²Π½Ρ ΠΎΠ±ΠΎΠ²βΡΠ·ΠΊΠΈ:
- ΠΠ΄ΠΌΡΠ½ΡΡΡΡΡΠ²Π°Π½Π½Ρ ΠΠ MongoDB
- ΠΠ½Π°Π»ΡΠ· ΠΏΡΠΎΠ±Π»Π΅ΠΌ ΠΏΡΠΎΠ΄ΡΠΊΡΠΈΠ²Π½ΠΎΡΡΡ ΠΠ MongoDB ΡΠ° Π²ΠΈΠ΄Π°ΡΠ° ΡΠ΅ΠΊΠΎΠΌΠ΅Π½Π΄Π°ΡΡΠΉ ΡΠΎΠ΄ΠΎ ΠΏΡΠ΄Π²ΠΈΡΠ΅Π½Π½Ρ Π΅ΡΠ΅ΠΊΡΠΈΠ²Π½ΠΎΡΡΡ ΡΠΎΠ±ΠΎΡΠΈ Π·Π°ΡΡΠΎΡΡΠ½ΠΊΡΠ²
- ΠΠ»Π°Π½ΡΠ²Π°Π½Π½Ρ ΡΠ° ΡΠ΅Π°Π»ΡΠ·Π°ΡΡΡ ΠΏΠΎΠ»ΡΡΠΈΠΊ ΡΠ΅Π·Π΅ΡΠ²Π½ΠΎΠ³ΠΎ ΠΊΠΎΠΏΡΡΠ²Π°Π½Π½Ρ ΠΠ, ΡΡΠ²ΠΎΡΠ΅Π½Π½Ρ ΡΠ° ΡΡΠΏΡΠΎΠ²ΡΠ΄ ΡΠ΅Π·Π΅ΡΠ²Π½ΠΈΡ ΠΠ
- ΠΡΠ΄Π½ΠΎΠ²Π»Π΅Π½Π½Ρ ΠΏΡΠ°ΡΠ΅Π·Π΄Π°ΡΠ½ΠΎΡΡΡ Π‘Π£ΠΠ ΠΏΡΡΠ»Ρ Π·Π±ΠΎΡΠ²
- Π£ΡΠ°ΡΡΡ Ρ Π²ΠΈΡΡΡΠ΅Π½Π½Ρ ΡΠ½ΡΠΈΠ΄Π΅Π½ΡΡΠ² ΡΠ° Π²Π·Π°ΡΠΌΠΎΠ΄ΡΡ Π· ΡΠ΅Ρ Π½ΡΡΠ½ΠΎΡ ΠΏΡΠ΄ΡΡΠΈΠΌΠΊΠΎΡ MongoDB
- ΠΠΎΠ½ΡΡΠ»ΡΡΡΠ²Π°Π½Π½Ρ ΡΠΏΠ΅ΡΡΠ°Π»ΡΡΡΡΠ² Π·Π°ΠΌΠΎΠ²Π½ΠΈΠΊΠ° Π· ΠΏΠΈΡΠ°Π½Ρ ΡΡΠ½ΠΊΡΡΠΎΠ½ΡΠ²Π°Π½Π½Ρ ΠΠ MongoDB
- ΠΡΠ³Π°Π½ΡΠ·Π°ΡΡΡ ΡΠ° Π²Π΅Π΄Π΅Π½Π½Ρ ΡΠΈΡΡΠ΅ΠΌ ΠΌΠΎΠ½ΡΡΠΎΡΠΈΠ½Π³Ρ ΠΠ MongoDB
- ΠΠ°Π±Π΅Π·ΠΏΠ΅ΡΠ΅Π½Π½Ρ ΡΠΎΠ±ΠΎΡΠΈ ΡΠΈΡΡΠ΅ΠΌ ΡΠ΅ΠΏΠ»ΡΠΊΠ°ΡΡΡ/Π±Π΅ΠΊΠ°ΠΏΡΠ²Π°Π½Π½Ρ ΠΠ MongoDB
- ΠΡΠΎΠ²Π΅Π΄Π΅Π½Π½Ρ ΡΠ΅Π³Π»Π°ΠΌΠ΅Π½ΡΠ½ΠΈΡ ΡΠΎΠ±ΡΡ ΡΠ° ΠΎΠΏΠ΅ΡΠ°ΡΠΈΠ²Π½ΠΈΡ ΡΠΎΠ±ΡΡ Π· ΡΡΡΠ½Π΅Π½Π½Ρ Π·Π±ΠΎΡΠ² Ρ ΡΠΎΠ±ΠΎΡΡ ΠΏΡΠΎΠ³ΡΠ°ΠΌΠ½ΠΈΡ ΠΊΠΎΠΌΠΏΠ»Π΅ΠΊΡΡΠ² Ρ ΡΠ°Π·Ρ ΡΡ Π²ΠΈΠ½ΠΈΠΊΠ½Π΅Π½Π½Ρ Π² ΡΠ΅ΠΆΠΈΠΌΡ 24/7/365.ΠΡΠ½ΠΎΠ²Π½Ρ Π²ΠΈΠΌΠΎΠ³ΠΈ:
- ΠΠΈΡΠ° ΠΎΡΠ²ΡΡΠ°
- ΠΠΎΡΠ²ΡΠ΄ ΡΠΎΠ±ΠΎΡΠΈ Π· ΠΠ MongoDB (ΡΠ½ΡΡΠ°Π»ΡΡΡΡ, ΠΊΠΎΠ½ΡΡΠ³ΡΡΡΠ²Π°Π½Π½Ρ, ΡΠ΅Π·Π΅ΡΠ²Π½Π΅ ΠΊΠΎΠΏΡΡΠ²Π°Π½Π½Ρ, Π·Π°Π±Π΅Π·ΠΏΠ΅ΡΠ΅Π½Π½Ρ Π±Π΅Π·ΠΏΠ΅ΠΊΠΈ)- Π ΠΎΠ·ΡΠΌΡΠ½Π½Ρ ΠΏΡΠΈΠ½ΡΠΈΠΏΡΠ² ΠΏΠΎΠ±ΡΠ΄ΠΎΠ²ΠΈ Π²ΠΈΡΠΎΠΊΠΎΠ½Π°Π²Π°Π½ΡΠ°ΠΆΠ΅Π½ΠΈΡ ΡΠ° Π²ΡΠ΄ΠΌΠΎΠ²ΠΎΡΡΡΠΉΠΊΠΈΡ ΡΠΈΡΡΠ΅ΠΌ (High Load, High availability)
- ΠΠΎΡΠ²ΡΠ΄ ΡΠΎΠ±ΠΎΡΠΈ Π· ΡΠ΅ΡΠ²Π΅ΡΠ½ΠΈΠΌΠΈ ΠΠ‘ β Linux
- ΠΡΠ»ΡΠ½Π΅ Π²ΠΎΠ»ΠΎΠ΄ΡΠ½Π½Ρ ΡΠΊΡΠΈΠΏΡΠΎΠ²ΠΈΠΌΠΈ ΠΌΠΎΠ²Π°ΠΌΠΈ: Bash, Python, Perl
- ΠΠΎΡΠ²ΡΠ΄ Π²ΠΈΠΊΠΎΡΠΈΡΡΠ°Π½Π½Ρ ΡΠ΅ΡΠ²ΡΡΡΠ² Ρ ΠΌΠ°ΡΠ½ΠΈΡ ΠΏΡΠΎΠ²Π°ΠΉΠ΄Π΅ΡΡΠ² (aws Π°Π±ΠΎ google cloud)
Π‘Π²ΠΎΡΠΌ ΡΠΏΡΠ²ΡΠΎΠ±ΡΡΠ½ΠΈΠΊΠ°ΠΌ ΠΌΠΈ ΠΏΡΠΎΠΏΠΎΠ½ΡΡΠΌΠΎ:
- Π ΠΎΠ±ΠΎΡΡ Π² Π½Π°ΠΉΠ±ΡΠ»ΡΡΠΎΠΌΡ ΡΠ° ΡΠ½Π½ΠΎΠ²Π°ΡΡΠΉΠ½ΠΎΠΌΡ Π±Π°Π½ΠΊΡ Π£ΠΊΡΠ°ΡΠ½ΠΈ
- ΠΡΡΡΡΠΉΠ½Π΅ ΠΏΡΠ°ΡΠ΅Π²Π»Π°ΡΡΡΠ²Π°Π½Π½Ρ ΡΠ° 24 ΠΊΠ°Π»Π΅Π½Π΄Π°ΡΠ½ΠΈΡ Π΄Π½Ρ Π²ΡΠ΄ΠΏΡΡΡΠΊΠΈ
- ΠΠΎΠ½ΠΊΡΡΠ΅Π½ΡΠ½Ρ Π·Π°ΡΠΎΠ±ΡΡΠ½Ρ ΠΏΠ»Π°ΡΡ
- ΠΠ΅Π΄ΠΈΡΠ½Π΅ ΡΡΡΠ°Ρ ΡΠ²Π°Π½Π½Ρ ΡΠ° ΠΊΠΎΡΠΏΠΎΡΠ°ΡΠΈΠ²Π½ΠΈΠΉ ΠΌΠΎΠ±ΡΠ»ΡΠ½ΠΈΠΉ Π·Π²βΡΠ·ΠΎΠΊ
- ΠΠΎΡΠΏΠΎΡΠ°ΡΠΈΠ²Π½Π΅ Π½Π°Π²ΡΠ°Π½Π½Ρ
- Π‘ΡΡΠ°ΡΠ½ΠΈΠΉ ΠΊΠΎΠΌΡΠΎΡΡΠ½ΠΈΠΉ ΠΎΡΡΡ
- Π¦ΡΠΊΠ°Π²Ρ ΠΏΡΠΎΡΠΊΡΠΈ, Π°ΠΌΠ±ΡΡΡΠΉΠ½Ρ Π·Π°Π΄Π°ΡΡ ΡΠ° Π΄ΠΈΠ½Π°ΠΌΡΡΠ½ΠΈΠΉ ΡΠΎΠ·Π²ΠΈΡΠΎΠΊ
- ΠΡΡΠΆΠ½ΡΠΉ ΠΏΡΠΎΡΠ΅ΡΡΠΉΠ½ΠΈΠΉ ΠΊΠΎΠ»Π΅ΠΊΡΠΈΠ² ΡΠ° ΡΠΈΠ»ΡΠ½Ρ ΠΊΠΎΠΌΠ°Π½Π΄Ρ
More -
Β· 96 views Β· 5 applications Β· 30d
Data Engineer (JustDone)
Full Remote Β· Ukraine Β· Product Β· 2 years of experience Β· Intermediate Ukrainian Product πΊπ¦Boosters β ΡΠ΅ ΡΠΊΡΠ°ΡΠ½ΡΡΠΊΠ° ΠΏΡΠΎΠ΄ΡΠΊΡΠΎΠ²Π° ΠΊΠΎΠΌΠΏΠ°Π½ΡΡ. ΠΠΈ ΡΡΠ²ΠΎΡΡΡΠΌΠΎ ΠΏΡΠΎΠ΄ΡΠΊΡΠΈ Π² ΡΡΠ΅ΡΠ°Ρ EdTech ΡΠ° life-improvement, ΡΠΊΡ Π½Π΅ΡΡΡΡ ΡΡΠ½Π½ΡΡΡΡ Π΄Π»Ρ 40 ΠΌΡΠ»ΡΠΉΠΎΠ½ΡΠ² Π»ΡΠ΄Π΅ΠΉ Π² ΡΡΡΠΎΠΌΡ ΡΠ²ΡΡΡ. ΠΠ°ΡΡ Π΄ΠΎΠ΄Π°ΡΠΊΠΈ ΡΠ΅Π³ΡΠ»ΡΡΠ½ΠΎ ΠΏΠΎΡΡΠ°ΠΏΠ»ΡΡΡΡ Π² Π’ΠΠΠΈ ΡΠ΅ΠΉΡΠΈΠ½Π³ΡΠ² Π² ΡΠ²ΠΎΡΡ ΠΊΠ°ΡΠ΅Π³ΠΎΡΡΡΡ . ΠΠΎΠΆΠ»ΠΈΠ²ΠΎ ΡΠΈ Π²ΠΆΠ΅...Boosters β ΡΠ΅ ΡΠΊΡΠ°ΡΠ½ΡΡΠΊΠ° ΠΏΡΠΎΠ΄ΡΠΊΡΠΎΠ²Π° ΠΊΠΎΠΌΠΏΠ°Π½ΡΡ. ΠΠΈ ΡΡΠ²ΠΎΡΡΡΠΌΠΎ ΠΏΡΠΎΠ΄ΡΠΊΡΠΈ Π² ΡΡΠ΅ΡΠ°Ρ EdTech ΡΠ° life-improvement, ΡΠΊΡ Π½Π΅ΡΡΡΡ ΡΡΠ½Π½ΡΡΡΡ Π΄Π»Ρ 40 ΠΌΡΠ»ΡΠΉΠΎΠ½ΡΠ² Π»ΡΠ΄Π΅ΠΉ Π² ΡΡΡΠΎΠΌΡ ΡΠ²ΡΡΡ. ΠΠ°ΡΡ Π΄ΠΎΠ΄Π°ΡΠΊΠΈ ΡΠ΅Π³ΡΠ»ΡΡΠ½ΠΎ ΠΏΠΎΡΡΠ°ΠΏΠ»ΡΡΡΡ Π² Π’ΠΠΠΈ ΡΠ΅ΠΉΡΠΈΠ½Π³ΡΠ² Π² ΡΠ²ΠΎΡΡ ΠΊΠ°ΡΠ΅Π³ΠΎΡΡΡΡ .
ΠΠΎΠΆΠ»ΠΈΠ²ΠΎ ΡΠΈ Π²ΠΆΠ΅ Π±Π°ΡΠΈΠ²(Π»Π°) Avrora, Manifest ΡΠΈ Promova.
ΠΠ°ΡΠ° Π³ΠΎΠ»ΠΎΠ²Π½Π° ΠΏΠ΅ΡΠ΅Π²Π°Π³Π° β ΡΠ΅ Π»ΡΠ΄ΠΈ. ΠΠΈ ΠΏΡΠ°ΡΡΡΠΌΠΎ Π· ΡΠΈΠΌΠΈ, Ρ ΡΠΎ ΡΠΎΠ΄Π½Ρ ΠΏΡΠ°Π³Π½Π΅ Π΄ΠΎ ΡΠ°ΠΌΠΎΠ²Π΄ΠΎΡΠΊΠΎΠ½Π°Π»Π΅Π½Π½Ρ ΡΠ° ΡΡΠ°Π²ΠΈΡΡ ΡΠΎΠ±Ρ Π·Π° ΠΌΠ΅ΡΡ ΠΏΠ΅ΡΠ΅ΠΌΠ°Π³Π°ΡΠΈ ΡΠ°Π·ΠΎΠΌ Π· Π½Π°ΠΌΠΈ.
ΠΠ°ΡΠ°Π·Ρ ΠΌΠΈ ΡΡΠΊΠ°ΡΠΌΠΎ Data Engineer Π² Π½Π°Ρ Π½ΠΎΠ²ΠΈΠΉ ΠΏΡΠΎΠ΄ΡΠΊΡ β AI Writing Π°ΡΠΈΡΡΠ΅Π½Ρ Π΄Π»Ρ ΡΡΠ²ΠΎΡΠ΅Π½Π½Ρ ΡΠΊΡΡΠ½ΠΎΠ³ΠΎ ΠΊΠΎΠ½ΡΠ΅Π½ΡΡ ΡΠ° ΠΏΡΠΎΠ²Π΅Π΄Π΅Π½Π½Ρ Π΄ΠΎΡΠ»ΡΠ΄ΠΆΠ΅Π½Ρ Π΄Π»Ρ ΠΏΡΠΎΡΠ΅ΡΡΠΉΠ½ΠΈΡ Ρ ΠΎΡΠ²ΡΡΠ½ΡΡ ΡΡΠ»Π΅ΠΉ, JustDone.
ΠΡΠ½ΠΎΠ²Π½Π° ΠΌΠ΅ΡΠ° ΡΡΡΡ ΡΠΎΠ»Ρ β ΠΎΡΠ³Π°Π½ΡΠ·Π°ΡΡΡ ΡΠ΅ΡΠ²ΡΡΡΠ² Π΄Π»Ρ ΡΠΎΠ±ΠΎΡΠΈ data analytics, ML models.
ο»Ώ
ο»Ώο»Ώο»ΏΠ§ΠΎΠ³ΠΎ Π²ΠΆΠ΅ Π΄ΠΎΡΡΠ³ JustDone:- β1 ΠΏΠΎΠ·ΠΈΡΡΡ Ρ Π‘Π¨Π Π² Π½ΡΡΡ AI Writing Assistantsο»Ώ;
- 90%+ ΠΎΠ΄ΠΈΠ½ΠΈΡΡ ΠΊΠΎΠ½ΡΠ΅Π½ΡΡ, ΡΡΠ²ΠΎΡΠ΅Π½ΠΈΡ ΠΊΠΎΡΠΈΡΡΡΠ²Π°ΡΠ°ΠΌΠΈ, Π·Π½Π°Ρ ΠΎΠ΄ΡΡΡ ΡΠ΅Π°Π»ΡΠ½Π΅ Π·Π°ΡΡΠΎΡΡΠ²Π°Π½Π½Ρο»Ώ;
- ΠΠ°ΡΡ ΠΊΠ»ΡΡΠ½ΡΠΈ Π³Π΅Π½Π΅ΡΡΡΡΡ Π±ΡΠ»ΡΡΠ΅ 3 ΠΌΠ»Π½ ΠΎΠ΄ΠΈΠ½ΠΈΡΡ ΠΊΠΎΠ½ΡΠ΅Π½ΡΡ ΡΠΎΠΌΡΡΡΡΡ.
Π’Π²ΠΎΡ Π·ΠΎΠ½Π° Π²ΠΏΠ»ΠΈΠ²Ρ:
- Π ΠΎΠ·ΡΠΎΠ±ΠΊΠ° ΡΠ° ΠΎΠΏΡΠΈΠΌΡΠ·Π°ΡΡΡ ETL/ELT-ΠΏΡΠΎΡΠ΅ΡΡΠ² Π΄Π»Ρ Π·Π±ΠΎΡΡ, ΡΡΠ°Π½ΡΡΠΎΡΠΌΠ°ΡΡΡ ΡΠ° Π·Π±Π΅ΡΡΠ³Π°Π½Π½Ρ Π΄Π°Π½ΠΈΡ ;
- Π Π΅Π°Π»ΡΠ·Π°ΡΡΡ Π²Π΅Π±-ΡΠΊΡΠ΅ΠΉΠΏΡΠ½Π³Ρ Π΄Π»Ρ Π°Π²ΡΠΎΠΌΠ°ΡΠΈΠ·ΠΎΠ²Π°Π½ΠΎΠ³ΠΎ Π·Π±ΠΎΡΡ Π΄Π°Π½ΠΈΡ ;
- ΠΠ°Π»Π°ΡΡΡΠ²Π°Π½Π½Ρ ΡΠ° ΠΏΡΠ΄ΡΡΠΈΠΌΠΊΠ° Ρ ΠΌΠ°ΡΠ½ΠΎΡ ΡΠ½ΡΡΠ°ΡΡΡΡΠΊΡΡΡΠΈ;
- ΠΠ²ΡΠΎΠΌΠ°ΡΠΈΠ·Π°ΡΡΡ ΠΏΠ°ΠΉΠΏΠ»Π°ΠΉΠ½ΡΠ², Π·Π°Π±Π΅Π·ΠΏΠ΅ΡΠ΅Π½Π½Ρ ΡΡ ΠΌΠ°ΡΡΡΠ°Π±ΠΎΠ²Π°Π½ΠΎΡΡΡ;
- ΠΠ°ΠΏΡΡΠΊ, ΠΏΡΠ΄ΡΡΠΈΠΌΠΊΠ° Ρ ΠΎΠ½ΠΎΠ²Π»Π΅Π½Π½Ρ Π°Π½Π°Π»ΡΡΠΈΡΠ½ΠΎΡ ΡΠ½ΡΡΠ°ΡΡΡΡΠΊΡΡΡΠΈ (Π·Π°ΡΠ°Π· ΡΠ΅ AirFlow, BigQuery, Tableau);
- ΠΡΠ΄ΠΊΠ»ΡΡΠ΅Π½Π½Ρ Ρ ΠΏΡΠ΄ΡΡΠΈΠΌΠΊΠ° ΡΠ½ΡΠ΅Π³ΡΠ°ΡΡΠΉ (Amplitude, GA4, GrowthBook, ΠΌΠ°ΡΠΊΠ΅ΡΠΈΠ½Π³ΠΎΠ²Ρ ΠΊΠ°Π±ΡΠ½Π΅ΡΠΈ);
- ΠΠΏΡΠΈΠΌΡΠ·Π°ΡΡΡ Π·Π°ΠΏΠΈΡΡΠ² ΡΠ° ΡΡΡΡΠΊΡΡΡΠΈ ΠΠ;
- Π Π΅Π²'Ρ Ρ ΠΎΠΏΡΠΈΠΌΡΠ·Π°ΡΡΡ ΡΠΊΡΠΈΠΏΡΡΠ² Π°Π²ΡΠΎΠΌΠ°ΡΠΈΠ·Π°ΡΡΡ ΡΠ΅ΠΏΠΎΡΡΠΈΠ½Π³Ρ Ρ Π°Π»ΡΠΎΡΡΠΈΠ½Π³Ρ;
- Π£ΠΏΡΠ°Π²Π»ΡΠ½Π½Ρ Π΄ΠΎΡΡΡΠΏΠΎΠΌ Π΄ΠΎ Π΄Π°Π½Π½ΠΈΡ , Π·Π°Π±Π΅Π·ΠΏΠ΅ΡΠ΅Π½Π½Ρ Π²ΡΠ΄ΠΏΠΎΠ²ΡΠ΄Π½ΠΎΡΡΡ ΡΡΠ°Π½Π΄Π°ΡΡΠ°ΠΌ Π±Π΅Π·ΠΏΠ΅ΠΊΠΈ ΡΠ° ΠΏΠΎΠ»ΡΡΠΈΠΊΠ°ΠΌ ΠΊΠΎΠΌΠΏΠ°Π½ΡΡ;
- ΠΠ·Π°ΡΠΌΠΎΠ΄ΡΡ Π· ΠΊΠΎΠΌΠ°Π½Π΄ΠΎΡ Π°Π½Π°Π»ΡΡΠΈΠΊΡΠ² (ΠΏΠΎΠ±ΡΠ΄ΠΎΠ²Π° Π°Π½Π°Π»ΡΡΠΈΡΠ½ΠΈΡ
Π²ΡΡΡΠΈΠ½ ΡΠ° Π΄Π°Π½Π½ΠΈΡ
Π΄Π»Ρ ML-ΠΌΠΎΠ΄Π΅Π»Π΅ΠΉ)
ΠΠ»Ρ ΡΡΠΎΠ³ΠΎ ΡΠΎΠ±Ρ Π·Π½Π°Π΄ΠΎΠ±ΠΈΡΡΡΡ:
- ΠΡΠ΄ 2Ρ ΡΠΎΠΊΡΠ² Π΄ΠΎΡΠ²ΡΠ΄ Π½Π° ΠΏΠΎΠ·ΠΈΡΡΡ Data Engineer, Π΄ΠΎΡΠ²ΡΠ΄ Backend Π±ΡΠ΄Π΅ Π·Π½Π°ΡΠ½ΠΈΠΌ ΠΏΠ»ΡΡΠΎΠΌ;
- ΠΠΎΠ±ΡΠ΄ΠΎΠ²Π° ETL/ELT-ΠΏΡΠΎΡΠ΅ΡΡΠ² Π· Π²ΠΈΠΊΠΎΡΠΈΡΡΠ°Π½Π½ΡΠΌ Apache Airflow;
- ΠΡΠ°ΠΊΡΠΈΡΠ½ΠΈΠΉ Π΄ΠΎΡΠ²ΡΠ΄ ΡΠΎΠ±ΠΎΡΠΈ Π· Π²Π΅Π±-ΡΠΊΡΠ΅ΠΉΠΏΡΠ½Π³ΠΎΠΌ;
- ΠΠΎΡΠ²ΡΠ΄ ΡΠΎΠ±ΠΎΡΠΈ Π· ΡΠ΅Π»ΡΡΡΠΉΠ½ΠΈΠΌΠΈ Π±Π°Π·Π°ΠΌΠΈ Π΄Π°Π½ΠΈΡ , ΡΠ°ΠΊΠΈΠΌΠΈ ΡΠΊ: PostgreSQL;
- ΠΠΎΡΠ²ΡΠ΄ ΡΠΎΠ±ΠΎΡΠΈ Π· Ρ ΠΌΠ°ΡΠ½ΠΈΠΌΠΈ ΠΏΠ»Π°ΡΡΠΎΡΠΌΠ°ΠΌΠΈ;
- ΠΠ½Π°Π½Π½Ρ CI/CD ΡΠ½ΡΡΡΡΠΌΠ΅Π½ΡΡΠ² Π΄Π»Ρ Π°Π²ΡΠΎΠΌΠ°ΡΠΈΠ·Π°ΡΡΡ ΠΏΠ°ΠΉΠΏΠ»Π°ΠΉΠ½ΡΠ²;
- ΠΠ½Π°Π»ΡΡΠΈΡΠ½Π΅ ΠΌΠΈΡΠ»Π΅Π½Π½Ρ ΡΠ° Π²ΠΌΡΠ½Π½Ρ ΠΌΠ°ΡΡΡΠ°Π±ΡΠ²Π°ΡΠΈ ΠΏΠ°ΠΉΠΏΠ»Π°ΠΉΠ½ΠΈ.
ΠΠΈ ΠΏΡΠΎΠΏΠΎΠ½ΡΡΠΌΠΎ:
- ΠΠΎΠΆΠ»ΠΈΠ²ΡΡΡΡ Π±Π΅Π·ΠΏΠΎΡΠ΅ΡΠ΅Π΄Π½ΡΠΎ Π²ΠΏΠ»ΠΈΠ½ΡΡΠΈ Π½Π° ΡΠΎΠ·Π±ΡΠ΄ΠΎΠ²Ρ Π΄Π°ΡΠ°-ΡΠ½ΠΆΠ΅Π½ΡΡΠΈΠ½Π³ΠΎΠ²ΠΈΡ ΠΏΡΠΎΡΠ΅ΡΡΠ², ΡΡ Π½Ρ Π°ΡΡ ΡΡΠ΅ΠΊΡΡΡΡ ΡΠ° ΡΠ΅Π°Π»ΡΠ·Π°ΡΡΡ;
- Π ΠΎΠ±ΠΎΡΠ° Π² ΡΠ°Π½Π΄Π΅ΠΌΡ Π· Π΅ΠΊΡΠΏΠ΅ΡΡΠ°ΠΌΠΈ Π² NLP, ΡΠΎ Π΄Π°Ρ ΠΌΠΎΠΆΠ»ΠΈΠ²ΡΡΡΡ Π·Π°Π½ΡΡΠ΅Π½Π½Ρ Π² ΡΠ΅Ρ Π½ΠΎΠ»ΠΎΠ³ΡΡ LLM;
- Π ΠΎΠ±ΠΎΡΡ Π² ΠΊΠΎΠΌΠ°Π½Π΄Ρ ΠΏΡΠΎΡΠ΅ΡΡΠΎΠ½Π°Π»ΡΠ² ΡΠ° Π· Π°ΡΠ΄ΠΈΡΠΎΡΡΡΡ Π±ΡΠ»ΡΡΠ΅ ΠΎΠ΄Π½ΠΎΠ³ΠΎ ΠΌΡΠ»ΡΠΉΠΎΠ½Ρ Π² ΠΌΡΡΡΡΡ;
- Π€ΡΠ»ΠΎΡΠΎΡΡΡ ΡΠ° ΡΠΌΠΎΠ²ΠΈ Π΄Π»Ρ ΡΠ²ΠΎΠ³ΠΎ ΠΏΠΎΡΡΡΠΉΠ½ΠΎΠ³ΠΎ ΡΠΎΡΡΡ ΡΠ° ΡΠΎΠ·Π²ΠΈΡΠΊΡ;
- ΠΠ΅Π»ΠΈΠΊΠΈΠΉ ΠΏΡΠΎΡΡΡΡ Π΄Π»Ρ Π²ΡΡΠ»Π΅Π½Π½Ρ Π²Π»Π°ΡΠ½ΠΈΡ
ΡΠ΄Π΅ΠΉ Ρ Π²ΠΏΠ»ΠΈΠ²Ρ Π½Π° ΠΏΡΠΎΠ΄ΡΠΊΡ.
ΠΠΎΡΠΏΠΎΡΠ°ΡΠΈΠ²Π½Ρ Π±Π΅Π½Π΅ΡΡΡΠΈ:
- ΠΠΎΠΌΠΏΠ΅Π½ΡΠ°ΡΡΡ Π΄ΠΎΠ΄Π°ΡΠΊΠΎΠ²ΠΎΠ³ΠΎ Π½Π°Π²ΡΠ°Π½Π½Ρ Π½Π° Π·ΠΎΠ²Π½ΡΡΠ½ΡΡ ΡΡΠ΅Π½ΡΠ½Π³Π°Ρ Ρ ΡΠ΅ΠΌΡΠ½Π°ΡΠ°Ρ ΡΠ° Business Ρ Management School Π΄Π»Ρ ΡΠΏΡΠ²ΡΠΎΠ±ΡΡΠ½ΠΈΠΊΡΠ²;
- ΠΠ΅Π»ΠΈΠΊΠ° Π΅Π»Π΅ΠΊΡΡΠΎΠ½Π½Π° Π±ΡΠ±Π»ΡΠΎΡΠ΅ΠΊΠ° ΡΠ° Π΄ΠΎΡΡΡΠΏ Π΄ΠΎ ΠΏΠ»Π°ΡΠ½ΠΈΡ ΠΎΠ½Π»Π°ΠΉΠ½-ΠΊΡΡΡΡΠ² Ρ ΠΊΠΎΠ½ΡΠ΅ΡΠ΅Π½ΡΡΠΉ, Π²Π½ΡΡΡΡΡΠ½Ρ Π±Π΅ΡΡΠ΄ΠΈ Ρ Π²ΠΎΡΠΊΡΠΎΠΏΠΈ, ΠΊΡΡΡΠΈ Π°Π½Π³Π»ΡΠΉΡΡΠΊΠΎΡ.
- ΠΠΎΡΠΏΠΎΡΠ°ΡΠΈΠ²Π½ΠΈΠΉ Π»ΡΠΊΠ°Ρ ΡΠ° ΠΌΠ΅Π΄ΠΈΡΠ½Π΅ ΡΡΡΠ°Ρ
ΡΠ²Π°Π½Π½Ρ.
ΠΡΠΎΡΠ΅Ρ ΡΠ½ΡΠ΅ΡΠ²ΚΌΡ:
- Pre-screen Π· ΡΠ΅ΠΊΡΡΡΠ΅ΡΠΎΠΌ (40 Ρ Π²ΠΈΠ»ΠΈΠ½);
- Π’Π΅ΡΡΠΎΠ²Π΅ Π·Π°Π²Π΄Π°Π½Π½Ρ;
- ΠΠ½ΡΠ΅ΡΠ²ΚΌΡ Π· Lead NLP Engineer ΡΠ° ΡΠ΅Ρ Π½ΡΡΠ½ΠΈΠΌ Π΅ΠΊΡΠΏΠ΅ΡΡΠΎΠΌ (1,5 Π³ΠΎΠ΄ΠΈΠ½ΠΈ);
- Bar-raising (1 Π³ΠΎΠ΄ΠΈΠ½Π°).
ΠΠ°Π»ΠΈΡΠ°ΠΉ ΡΠ²ΠΎΡ ΡΠ΅Π·ΡΠΌΠ΅ Ρ Π΄Π°Π²Π°ΠΉ ΡΡΠ²ΠΎΡΡΠ²Π°ΡΠΈ ΡΠ½ΡΠΊΠΎΡΠ½ΠΈ ΡΠ°Π·ΠΎΠΌ! π¦
More -
Β· 22 views Β· 1 application Β· 19d
Lead Data Analyst
Office Work Β· Ukraine (Kyiv) Β· Product Β· 3 years of experienceΠΡΠΈΠ²ΡΡ! ΠΠΈ β ΡΠΊΡΠ°ΡΠ½ΡΡΠΊΠ° ΠΊΠΎΠΌΠΏΠ°Π½ΡΡ, ΡΠΎ Π²ΠΆΠ΅ ΠΏΠΎΠ½Π°Π΄ 20 ΡΠΎΠΊΡΠ² ΠΏΡΠ°ΡΡΡ Ρ ΡΡΠ΅ΡΡ ΡΠΎΠ·Π΄ΡΡΠ±Π½ΠΈΡ ΠΏΡΠΎΠ΄Π°ΠΆΡΠ², Π·Π°ΠΊΡΠΏΡΠ²Π»Ρ ΡΠ° Π²ΠΈΡΠΎΠ±Π½ΠΈΡΡΠ²Π° ΠΎΠ΄ΡΠ³Ρ ΡΠ° Π°ΠΊΡΠ΅ΡΡΠ°ΡΡΠ². Π¨ΡΠΊΠ°ΡΠΌΠΎ Π² ΡΠ²ΠΎΡ ΠΊΠΎΠΌΠ°Π½Π΄Ρ ΡΠ°Π»Π°Π½ΠΎΠ²ΠΈΡΠΎΠ³ΠΎ Β«Lead Data AnalystΒ», ΡΠΊΠΈΠΉ ΡΡΠ°Π½Π΅ ΡΠ°ΡΡΠΈΠ½ΠΎΡ Π½Π°ΡΠΎΡ ΠΊΠΎΠΌΠ°Π½Π΄ΠΈ ΡΠ° Π΄ΠΎΠΏΠΎΠΌΠΎΠΆΠ΅ Π½Π°ΠΌ Π΄ΠΎΡΡΠ³ΡΠΈ...ΠΡΠΈΠ²ΡΡ!
ΠΠΈ β ΡΠΊΡΠ°ΡΠ½ΡΡΠΊΠ° ΠΊΠΎΠΌΠΏΠ°Π½ΡΡ, ΡΠΎ Π²ΠΆΠ΅ ΠΏΠΎΠ½Π°Π΄ 20 ΡΠΎΠΊΡΠ² ΠΏΡΠ°ΡΡΡ Ρ ΡΡΠ΅ΡΡ ΡΠΎΠ·Π΄ΡΡΠ±Π½ΠΈΡ ΠΏΡΠΎΠ΄Π°ΠΆΡΠ², Π·Π°ΠΊΡΠΏΡΠ²Π»Ρ ΡΠ° Π²ΠΈΡΠΎΠ±Π½ΠΈΡΡΠ²Π° ΠΎΠ΄ΡΠ³Ρ ΡΠ° Π°ΠΊΡΠ΅ΡΡΠ°ΡΡΠ². Π¨ΡΠΊΠ°ΡΠΌΠΎ Π² ΡΠ²ΠΎΡ ΠΊΠΎΠΌΠ°Π½Π΄Ρ ΡΠ°Π»Π°Π½ΠΎΠ²ΠΈΡΠΎΠ³ΠΎ Β«Lead Data AnalystΒ», ΡΠΊΠΈΠΉ ΡΡΠ°Π½Π΅ ΡΠ°ΡΡΠΈΠ½ΠΎΡ Π½Π°ΡΠΎΡ ΠΊΠΎΠΌΠ°Π½Π΄ΠΈ ΡΠ° Π΄ΠΎΠΏΠΎΠΌΠΎΠΆΠ΅ Π½Π°ΠΌ Π΄ΠΎΡΡΠ³ΡΠΈ Π½ΠΎΠ²ΠΈΡ Π²ΠΈΡΠΎΡ.
ΠΡΠ½ΠΎΠ²Π½Ρ ΠΎΠ±ΠΎΠ²'ΡΠ·ΠΊΠΈ:
- ΠΡΠ΅ΠΊΡΠΈΠ²Π½Π΅ ΡΠΏΡΠ°Π²Π»ΡΠ½Π½Ρ ΠΊΠΎΠΌΠ°Π½Π΄ΠΎΡ Π΄Π°ΡΠ° Π°Π½Π°Π»ΡΡΠΈΠΊΡΠ² Π΄Π»Ρ Π·Π°Π±Π΅Π·ΠΏΠ΅ΡΠ΅Π½Π½Ρ ΡΠΊΡΡΠ½ΠΎΠ³ΠΎ Π°Π½Π°Π»ΡΠ·Ρ Π΄Π°Π½ΠΈΡ , ΡΠΎΠ·ΠΏΠΎΠ΄ΡΠ» Π·Π°Π΄Π°Ρ ΡΠ° ΠΊΠΎΠ½ΡΡΠΎΠ»Ρ ΡΡ Π²ΠΈΠΊΠΎΠ½Π°Π½Π½Ρ.
- Π ΠΎΠ·ΡΠΎΠ±ΠΊΠ° ΡΠ½Π½ΠΎΠ²Π°ΡΡΠΉΠ½ΠΈΡ ΠΏΡΠ΄Ρ ΠΎΠ΄ΡΠ² Π΄ΠΎ Π²ΠΈΡΡΡΠ΅Π½Π½Ρ Π±ΡΠ·Π½Π΅Ρ-Π·Π°Π²Π΄Π°Π½Ρ, Π° ΡΠ°ΠΊΠΎΠΆ ΠΊΠΎΠΎΡΠ΄ΠΈΠ½Π°ΡΡΡ ΠΏΡΠΎΡΠ΅ΡΡΠ², ΠΏΠΎΠ²βΡΠ·Π°Π½ΠΈΡ ΡΠ· ΠΎΠ±ΡΠΎΠ±ΠΊΠΎΡ, Π²ΡΠ·ΡΠ°Π»ΡΠ·Π°ΡΡΡΡ ΡΠ° ΡΠ½ΡΠ΅ΡΠΏΡΠ΅ΡΠ°ΡΡΡΡ Π΄Π°Π½ΠΈΡ Π΄Π»Ρ ΠΏΡΠΈΠΉΠ½ΡΡΡΡ ΡΡΡΠ°ΡΠ΅Π³ΡΡΠ½ΠΈΡ ΡΡΡΠ΅Π½Ρ.
- ΠΡΠΎΠ²Π΅Π΄Π΅Π½Π½Ρ Π³Π»ΠΈΠ±ΠΎΠΊΠΎΠ³ΠΎ Π°Π½Π°Π»ΡΠ·Ρ Π΄Π°Π½ΠΈΡ , Π²ΠΈΡΠ²Π»Π΅Π½Π½Ρ ΡΡΠ΅Π½Π΄ΡΠ², Π·Π°ΠΊΠΎΠ½ΠΎΠΌΡΡΠ½ΠΎΡΡΠ΅ΠΉ ΡΠ° Π°Π½ΠΎΠΌΠ°Π»ΡΠΉ.
- ΠΠΏΡΠΎΠ²Π°Π΄ΠΆΠ΅Π½Π½Ρ Π½ΠΎΠ²ΠΈΡ ΡΠ½ΡΡΡΡΠΌΠ΅Π½ΡΡΠ² ΡΠ° ΡΠ΅Ρ Π½ΠΎΠ»ΠΎΠ³ΡΠΉ Π΄Π»Ρ ΠΏΠΎΠΊΡΠ°ΡΠ΅Π½Π½Ρ ΠΏΡΠΎΡΠ΅ΡΡΠ² Π°Π½Π°Π»ΡΡΠΈΠΊΠΈ
- ΠΠΏΡΠΈΠΌΡΠ·Π°ΡΡΡ ΠΏΡΠΎΡΠ΅ΡΡΠ² Π·Π±ΠΎΡΡ, ΠΎΠ±ΡΠΎΠ±ΠΊΠΈ ΡΠ° Π·Π±Π΅ΡΡΠ³Π°Π½Π½Ρ Π΄Π°Π½ΠΈΡ .
- ΠΠ°Π²ΡΠ°Π½Π½Ρ ΡΠ° ΠΌΠ΅Π½ΡΠΎΡΡΡΠ²ΠΎ ΡΠ»Π΅Π½ΡΠ² ΠΊΠΎΠΌΠ°Π½Π΄ΠΈ, ΠΏΡΠ΄ΡΡΠΈΠΌΠΊΠ° ΡΡ
ΠΏΡΠΎΡΠ΅ΡΡΠΉΠ½ΠΎΠ³ΠΎ ΡΠΎΠ·Π²ΠΈΡΠΊΡ.
ΠΠΈΠΌΠΎΠ³ΠΈ:
- ΠΠΈΡΠ° ΠΎΡΠ²ΡΡΠ° Π² Π³Π°Π»ΡΠ·Ρ ΠΌΠ°ΡΠ΅ΠΌΠ°ΡΠΈΠΊΠΈ, ΡΡΠ°ΡΠΈΡΡΠΈΠΊΠΈ, Π΅ΠΊΠΎΠ½ΠΎΠΌΡΠΊΠΈ, ΠΊΠΎΠΌΠΏ'ΡΡΠ΅ΡΠ½ΠΈΡ Π½Π°ΡΠΊ Π°Π±ΠΎ ΡΡΠΌΡΠΆΠ½ΠΈΡ Π΄ΠΈΡΡΠΈΠΏΠ»ΡΠ½.
- ΠΠΎΡΠ²ΡΠ΄ ΡΠΎΠ±ΠΎΡΠΈ Π½Π° ΠΏΠΎΡΠ°Π΄Ρ Data Analyst Π²ΡΠ΄ 3 ΡΠΎΠΊΡΠ², Π²ΠΊΠ»ΡΡΠ°ΡΡΠΈ ΠΊΠ΅ΡΡΠ²Π½Ρ ΡΠΎΠ»Ρ.
- ΠΡΠ»ΡΠ½Π΅ Π²ΠΎΠ»ΠΎΠ΄ΡΠ½Π½Ρ ΡΠ½ΡΡΡΡΠΌΠ΅Π½ΡΠ°ΠΌΠΈ Π°Π½Π°Π»ΡΠ·Ρ Π΄Π°Π½ΠΈΡ (SQL, Python, Excel).
- ΠΠΎΡΠ²ΡΠ΄ ΡΠΎΠ±ΠΎΡΠΈ Π· BI-ΡΠ½ΡΡΡΡΠΌΠ΅Π½ΡΠ°ΠΌΠΈ (Power BI, Tableau).
- Π ΠΎΠ·ΡΠΌΡΠ½Π½Ρ ΠΌΠ΅ΡΠΎΠ΄ΡΠ² ΠΌΠ°ΡΠΈΠ½Π½ΠΎΠ³ΠΎ Π½Π°Π²ΡΠ°Π½Π½Ρ ΡΠ° ΡΡΠ°ΡΠΈΡΡΠΈΡΠ½ΠΎΠ³ΠΎ Π°Π½Π°Π»ΡΠ·Ρ.
- MDX/DAX.
- ΠΠΌΡΠ½Π½Ρ ΠΏΡΠ°ΡΡΠ²Π°ΡΠΈ Π² ΠΊΠΎΠΌΠ°Π½Π΄Ρ, ΡΠΈΠ»ΡΠ½Ρ ΠΊΠΎΠΌΡΠ½ΡΠΊΠ°ΡΡΠΉΠ½Ρ Π½Π°Π²ΠΈΡΠΊΠΈ ΡΠ° ΠΎΡΠ³Π°Π½ΡΠ·Π°ΡΡΠΉΠ½Ρ Π·Π΄ΡΠ±Π½ΠΎΡΡΡ.
- Π‘Π°ΠΌΠΎΡΡΡΠΉΠ½ΡΡΡΡ Ρ ΡΠΎΠ±ΠΎΡΡ, ΡΠ½ΡΡΡΠ°ΡΠΈΠ²Π½ΡΡΡΡ, Π²ΠΌΡΠ½Π½Ρ ΠΏΡΡΠΎΡΠΈΡΠΈΠ·ΡΠ²Π°ΡΠΈ Π·Π°Π΄Π°ΡΡ ΡΠ° ΠΏΠ»Π°Π½ΡΠ²Π°ΡΠΈ ΡΠ²ΡΠΉ ΡΠ°Ρ.
ΠΠΎΠ΄Π±Π°ΡΠΌΠΎ ΠΏΡΠΎ: - Π’Π²ΡΠΉ Π΄ΠΎΡ ΡΠ΄. ΠΠΎΠ½ΠΊΡΡΠ΅Π½ΡΠ½Π° Π·Π°ΡΠΎΠ±ΡΡΠ½Π° ΠΏΠ»Π°ΡΠ° ΡΠ° ΡΡΠ°Π±ΡΠ»ΡΠ½Ρ Π²ΠΈΠΏΠ»Π°ΡΠΈ.
- Π’Π²ΠΎΡ Π²ΠΏΠ΅Π²Π½Π΅Π½ΡΡΡΡ. ΠΠΏΠ»Π°ΡΡΠ²Π°Π½Ρ Π»ΡΠΊΠ°ΡΠ½ΡΠ½Ρ ΡΠ° Π²ΡΠ΄ΠΏΡΡΡΠΊΠΈ (24 ΠΊΠ°Π»Π΅Π½Π΄Π°ΡΠ½Ρ Π΄Π½Ρ Π½Π° ΡΡΠΊ).
- Π’Π²ΡΠΉ Π½Π°ΡΡΡΡΠΉ. ΠΡΡΠΆΠ½Ρ, ΠΊΡΡΡΡ ΠΊΠΎΡΠΏΠΎΡΠ°ΡΠΈΠ²ΠΈ, ΠΏβΡΡΠ½ΠΈΡΠ½Ρ ΠΏΠΎΡΠΈΠ΄Π΅Π»ΠΊΠΈ Π· Π½Π°ΡΡΠΎΠ»ΠΊΠ°ΠΌΠΈ;)
- Π’Π²ΡΠΉ ΠΊΠ°Ρ'ΡΡΠ½ΠΈΠΉ ΡΡΡΡ. ΠΠΎΠΌΠΏΠ΅Π½ΡΠ°ΡΡΡ Π½Π°Π²ΡΠ°Π½Π½Ρ ΡΠ° Π²ΡΡ ΡΠΌΠΎΠ²ΠΈ Π΄Π»Ρ ΡΠ°ΠΌΠΎΡΠΎΠ·Π²ΠΈΡΠΊΡ.
- Π’Π²ΡΠΉ ΠΊΠΎΠΌΡΠΎΡΡ. ΠΠΎΡΠΏΠΎΡΠ°ΡΠΈΠ²Π½Π° ΠΊΡΠ»ΡΡΡΡΠ° Π²Π·Π°ΡΠΌΠΎΠΏΠΎΠ²Π°Π³ΠΈ ΡΠ° ΠΏΡΠ΄ΡΡΠΈΠΌΠΊΠΈ, Π΄ΠΎΠΏΠΎΠΌΠΎΠΆΠ΅ Π»Π΅Π³ΠΊΠΎ Π°Π΄Π°ΠΏΡΡΠ²Π°ΡΠΈΡΡ Π² ΠΊΠΎΠ»Π΅ΠΊΡΠΈΠ²Ρ Ρ ΡΠ°Π·ΠΎΠΌ Π΄ΠΎΠ»Π°ΡΠΈ Π²ΠΈΠΊΠ»ΠΈΠΊΠΈ.
- Π’Π²ΠΎΡ Π·Π΄ΠΎΡΠΎΠ²βΡ. Π‘ΠΏΠΎΡΡΠΈΠ²Π½Π΅ ΠΆΠΈΡΡΡ β ΡΡΡΠ±ΠΎΠ», Π²ΠΎΠ»Π΅ΠΉΠ±ΠΎΠ», ΠΉΠΎΠ³Π°.
- Π’Π²ΡΠΉ ΡΠΎΠ·Π²ΠΈΡΠΎΠΊ. ΠΡο»ΏΡΡΠΈ Π°Π½Π³Π»ΡΠΉΡΠΊΠΎΡ ΠΌΠΎΠ²ΠΈ .
ΠΠΎΡΠΎΠ²ΠΈΠΉ Π΄ΠΎ Π½ΠΎΠ²ΠΈΡ Π²ΠΈΠΊΠ»ΠΈΠΊΡΠ² ΡΠ° ΡΡΠΊΠ°Π²ΠΈΡ Π·Π°Π΄Π°Ρ? Π’ΠΎΠ΄Ρ ΡΠ΅ΠΊΠ°ΡΠΌΠΎ ΡΠ°ΠΌΠ΅ Π½Π° ΡΠ²ΠΎΡ ΡΠ΅Π·ΡΠΌΠ΅!
-
Β· 89 views Β· 6 applications Β· 16d
Data Engineer
Full Remote Β· EU Β· Product Β· 1 year of experience Β· IntermediateGrowe ΡΠ΅ΠΊΠ°Ρ Π½Π° ΡΠΈΡ , Ρ ΡΠΎ ΠΏΡΠ°Π³Π½Π΅: - ΠΡΠΎΠ΅ΠΊΡΡΠ²Π°ΡΠΈ, ΡΠΎΠ·ΡΠΎΠ±Π»ΡΡΠΈ ΡΠ° ΠΏΡΠ΄ΡΡΠΈΠΌΡΠ²Π°ΡΠΈ ΠΌΠ°ΡΡΡΠ°Π±ΠΎΠ²Π°Π½Ρ ΠΊΠΎΠ½Π²Π΅ΡΡΠΈ Π΄Π°Π½ΠΈΡ Π·Π° Π΄ΠΎΠΏΠΎΠΌΠΎΠ³ΠΎΡ Airflow; - Π‘ΡΠ²ΠΎΡΡΠ²Π°ΡΠΈ ΡΠ° ΠΎΠΏΡΠΈΠΌΡΠ·ΡΠ²Π°ΡΠΈ ΡΠ°Π±Π»ΠΈΡΡ Π² Athena, Π·Π°Π±Π΅Π·ΠΏΠ΅ΡΡΡΡΠΈ Π΅ΡΠ΅ΠΊΡΠΈΠ²Π½Ρ ΡΠΎΠ±ΠΎΡΡ Π·Π°ΠΏΠΈΡΡΠ² Ρ Π΅ΠΊΠΎΠ½ΠΎΠΌΡΡΠ½Ρ Π΅ΡΠ΅ΠΊΡΠΈΠ²Π½ΡΡΡΡ; - ΠΠΈΡΠ°ΡΠΈ ΡΠ°...Growe ΡΠ΅ΠΊΠ°Ρ Π½Π° ΡΠΈΡ , Ρ ΡΠΎ ΠΏΡΠ°Π³Π½Π΅:
- ΠΡΠΎΠ΅ΠΊΡΡΠ²Π°ΡΠΈ, ΡΠΎΠ·ΡΠΎΠ±Π»ΡΡΠΈ ΡΠ° ΠΏΡΠ΄ΡΡΠΈΠΌΡΠ²Π°ΡΠΈ ΠΌΠ°ΡΡΡΠ°Π±ΠΎΠ²Π°Π½Ρ ΠΊΠΎΠ½Π²Π΅ΡΡΠΈ Π΄Π°Π½ΠΈΡ Π·Π° Π΄ΠΎΠΏΠΎΠΌΠΎΠ³ΠΎΡ Airflow;
- Π‘ΡΠ²ΠΎΡΡΠ²Π°ΡΠΈ ΡΠ° ΠΎΠΏΡΠΈΠΌΡΠ·ΡΠ²Π°ΡΠΈ ΡΠ°Π±Π»ΠΈΡΡ Π² Athena, Π·Π°Π±Π΅Π·ΠΏΠ΅ΡΡΡΡΠΈ Π΅ΡΠ΅ΠΊΡΠΈΠ²Π½Ρ ΡΠΎΠ±ΠΎΡΡ Π·Π°ΠΏΠΈΡΡΠ² Ρ Π΅ΠΊΠΎΠ½ΠΎΠΌΡΡΠ½Ρ Π΅ΡΠ΅ΠΊΡΠΈΠ²Π½ΡΡΡΡ;
- ΠΠΈΡΠ°ΡΠΈ ΡΠ° ΠΊΠ΅ΡΡΠ²Π°ΡΠΈ ΠΏΠ΅ΡΠ΅ΡΠ²ΠΎΡΠ΅Π½Π½ΡΠΌΠΈ SQL Ρ DBT, ΡΡΠ²ΠΎΡΡΡΡΠΈ Π±Π°Π³Π°ΡΠΎΡΠ°Π·ΠΎΠ²Ρ ΡΠ° Π΄ΠΎΠ±ΡΠ΅ Π·Π°Π΄ΠΎΠΊΡΠΌΠ΅Π½ΡΠΎΠ²Π°Π½Ρ ΠΌΠΎΠ΄Π΅Π»Ρ;
- ΠΠΏΡΠΈΠΌΡΠ·ΡΠ²Π°ΡΠΈ ΡΠΎΠ±ΠΎΡΡ ΠΏΡΠΎΡΠ΅ΡΠΈ Π΄Π°Π½ΠΈΡ Π΄Π»Ρ ΠΏΡΠΎΠ΄ΡΠΊΡΠΈΠ²Π½ΠΎΡΡΡ, Π½Π°Π΄ΡΠΉΠ½ΠΎΡΡΡ ΡΠ° Π΅ΠΊΠΎΠ½ΠΎΠΌΡΡΠ½ΠΎΡΡΡ;
- ΠΠ²ΡΠΎΠΌΠ°ΡΠΈΠ·ΡΠ²Π°ΡΠΈ Π½Π°Π΄Π°Π½Π½Ρ ΡΠ½ΡΡΠ°ΡΡΡΡΠΊΡΡΡΠΈ Π·Π° Π΄ΠΎΠΏΠΎΠΌΠΎΠ³ΠΎΡ Terraform Π΄Π»Ρ ΡΠ΅ΡΠ΅Π΄ΠΎΠ²ΠΈΡ ΠΎΠ±ΡΠΎΠ±ΠΊΠΈ Π΄Π°Π½ΠΈΡ ;
- ΠΠ°Π±Π΅Π·ΠΏΠ΅ΡΡΠ²Π°ΡΠΈ ΡΡΠ»ΡΡΠ½ΡΡΡΡ ΡΠ° ΡΠ·Π³ΠΎΠ΄ΠΆΠ΅Π½ΡΡΡΡ Π΄Π°Π½ΠΈΡ ΡΠ»ΡΡ ΠΎΠΌ ΠΌΠΎΠ½ΡΡΠΎΡΠΈΠ½Π³Ρ, ΠΏΠ΅ΡΠ΅Π²ΡΡΠΊΠΈ ΡΠ° ΠΎΠ±ΡΠΎΠ±ΠΊΠΈ ΠΏΠΎΠΌΠΈΠ»ΠΎΠΊ;
- Π‘ΠΏΡΠ²ΠΏΡΠ°ΡΡΠ²Π°ΡΠΈ Π· ΠΊΠΎΠΌΠ°Π½Π΄Π°ΠΌΠΈ Π°Π½Π°Π»ΡΡΠΈΠΊΡΠ², BI, ΡΠ½ΠΆΠ΅Π½Π΅ΡΡΠ², ΡΠΎΠ± Π·ΡΠΎΠ·ΡΠΌΡΡΠΈ ΠΏΠΎΡΡΠ΅Π±ΠΈ Π² Π΄Π°Π½ΠΈΡ ΡΠ° Π½Π°Π΄Π°ΡΠΈ ΡΡΡΠ΅Π½Π½Ρ.ΠΠ°ΠΌ ΠΏΠΎΡΡΡΠ±Π΅Π½ ΡΠ²ΡΠΉ ΠΏΡΠΎΡΠ΅ΡΡΠΉΠ½ΠΈΠΉ Π΄ΠΎΡΠ²ΡΠ΄:
- 1,5+ ΡΠΎΠΊΠΈ Π΄ΠΎΡΠ²ΡΠ΄Ρ Π² ΡΠ½ΠΆΠ΅Π½Π΅ΡΡΡ Π΄Π°Π½ΠΈΡ Π· ΡΠΎΠΊΡΡΠΎΠΌ Π½Π° ΠΏΡΠΎΡΠ΅ΡΠΈ ELT;
- ΠΠ΅ΡΠ΅Π²ΡΡΠ΅Π½ΠΈΠΉ Π΄ΠΎΡΠ²ΡΠ΄ Π· Python, SQL, ΠΌΠΎΠ΄Π΅Π»ΡΠ²Π°Π½Π½ΡΠΌ Π΄Π°Π½ΠΈΡ ΡΠ° ΠΎΠΏΡΠΈΠΌΡΠ·Π°ΡΡΡ ΠΏΡΠΎΠ΄ΡΠΊΡΠΈΠ²Π½ΠΎΡΡΡ;
- ΠΠΎΡΠ²ΡΠ΄ ΡΠΎΠ±ΠΎΡΠΈ Π· Airflow DAG Π΄Π»Ρ ΠΎΡΠΊΠ΅ΡΡΡΠΎΠ²ΠΊΠΈ ΡΠΎΠ±ΠΎΡΠΎΠ³ΠΎ ΠΏΡΠΎΡΠ΅ΡΡ;
- ΠΠΎΡΠ²ΡΠ΄ ΡΠΎΠ±ΠΎΡΠΈ Π· DBT Π΄Π»Ρ ΠΏΠ΅ΡΠ΅ΡΠ²ΠΎΡΠ΅Π½Ρ Π΄Π°Π½ΠΈΡ ΡΠ° ΠΌΠΎΠ΄ΡΠ»ΡΠ½ΠΎΠ³ΠΎ ΠΌΠΎΠ΄Π΅Π»ΡΠ²Π°Π½Π½Ρ;
- Π ΠΎΠ·ΡΠΌΡΠ½Π½Ρ Π°ΡΡ ΡΡΠ΅ΠΊΡΡΡ AWS S3, Athena ΡΠ° ΠΎΠ·Π΅ΡΠ° Π΄Π°Π½ΠΈΡ ;
- ΠΠΎΡΠ²ΡΠ΄ Π· Terraform Π΄Π»Ρ Π°Π²ΡΠΎΠΌΠ°ΡΠΈΠ·Π°ΡΡΡ ΡΠ½ΡΡΠ°ΡΡΡΡΠΊΡΡΡΠΈ (Π±ΡΠ΄Π΅ ΠΏΠ»ΡΡΠΎΠΌ).ΠΠΈ ΡΡΠ½ΡΡΠΌΠΎ:
- Π‘ΠΈΠ»ΡΠ½Ρ Π°Π½Π°Π»ΡΡΠΈΡΠ½Ρ Π·Π΄ΡΠ±Π½ΠΎΡΡΡ;
- ΠΠ°Π²ΠΈΡΠΊΠΈ Π²ΠΈΡΡΡΠ΅Π½Π½Ρ ΠΏΡΠΎΠ±Π»Π΅ΠΌ;
- Π£Π²Π°Π³Ρ Π΄ΠΎ Π΄Π΅ΡΠ°Π»Π΅ΠΉ.ΠΠΈ ΡΡΠΊΠ°ΡΠΌΠΎ ΡΠΈΡ , Ρ ΡΠΎ ΡΠΎΠ·Π΄ΡΠ»ΡΡ Π½Π°ΡΡ ΠΊΠ»ΡΡΠΎΠ²Ρ ΡΡΠ½Π½ΠΎΡΡΡ:
- GROWE TOGETHER: ΠΠ°ΡΠ° ΠΊΠΎΠΌΠ°Π½Π΄Π° β Π½Π°ΡΠ° Π³ΠΎΠ»ΠΎΠ²Π½Π° ΡΡΠ½Π½ΡΡΡΡ. ΠΠΈ ΠΏΡΠ°ΡΡΡΠΌΠΎ ΡΠ°Π·ΠΎΠΌ ΡΠ° ΠΏΡΠ΄ΡΡΠΈΠΌΡΡΠΌΠΎ ΠΎΠ΄ΠΈΠ½ ΠΎΠ΄Π½ΠΎΠ³ΠΎ Π΄Π»Ρ Π΄ΠΎΡΡΠ³Π½Π΅Π½Π½Ρ Π½Π°ΡΠΈΡ ΡΠΏΡΠ»ΡΠ½ΠΈΡ ΡΡΠ»Π΅ΠΉ;
- DRIVE RESULT OVER PROCESS: ΠΠΈ Π²ΡΡΠ°Π½ΠΎΠ²Π»ΡΡΠΌΠΎ Π°ΠΌΠ±ΡΡΡΠΉΠ½Ρ, ΡΡΡΠΊΡ, Π²ΠΈΠΌΡΡΡΠ²Π°Π½Ρ ΡΡΠ»Ρ Π²ΡΠ΄ΠΏΠΎΠ²ΡΠ΄Π½ΠΎ Π΄ΠΎ ΡΡΡΠ°ΡΠ΅Π³ΡΡ ΡΡΠΏΡΡ Ρ Growe;
- BE READY FOR CHANGE: ΠΠΈ ΡΠΏΡΠΈΠΉΠΌΠ°ΡΠΌΠΎ Π²ΠΈΠΊΠ»ΠΈΠΊΠΈ ΡΠΊ ΠΌΠΎΠΆΠ»ΠΈΠ²ΠΎΡΡΡ Π΄Π»Ρ Π·ΡΠΎΡΡΠ°Π½Π½Ρ ΡΠ° Π΅Π²ΠΎΠ»ΡΡΡΡ. ΠΠΈ Π°Π΄Π°ΠΏΡΡΡΠΌΠΎΡΡ ΡΡΠΎΠ³ΠΎΠ΄Π½Ρ, ΡΠΎΠ± ΠΏΠ΅ΡΠ΅ΠΌΠΎΠ³ΡΠΈ Π·Π°Π²ΡΡΠ°.
Π©ΠΎ ΠΌΠΈ ΠΏΡΠΎΠΏΠΎΠ½ΡΡΠΌΠΎ?
- ΠΠ΅Π΄ΠΈΡΠ½Π΅ ΡΡΡΠ°Ρ ΡΠ²Π°Π½Π½Ρ ΡΠ° ΡΡΠ½Π°Π½ΡΠΎΠ²Π° Π΄ΠΎΠΏΠΎΠΌΠΎΠ³Π°;
- Benefit Cafeteria (ΠΊΠΎΠΌΠΏΠ΅Π½ΡΠ°ΡΡΡ ΡΠΏΠΎΡΡΠ·Π°Π»Ρ /ΡΡΠΎΠΌΠ°ΡΠΎΠ»ΠΎΠ³ΡΡ /ΠΏΡΠΈΡ ΠΎΠ»ΠΎΠ³Π° ΡΠΎΡΠΎ);
- 100β% ΠΎΠΏΠ»Π°ΡΡΠ²Π°Π½Ρ Π»ΡΠΊΠ°ΡΠ½ΡΠ½Ρ;
- ΠΠΏΠ»Π°ΡΡΠ²Π°Π½Π° Π²ΡΠ΄ΠΏΡΡΡΠΊΠ°;
- Π ΡΡΠ½ΠΈΠΉ ΠΏΠ΅ΡΠ΅Π³Π»ΡΠ΄ Π·Π°ΡΠΎΠ±ΡΡΠ½ΠΎΡ ΠΏΠ»Π°ΡΠΈ (Π½Π° ΠΎΡΠ½ΠΎΠ²Ρ ΡΠ΅Π·ΡΠ»ΡΡΠ°ΡΡΠ²);
- ΠΠΎΠ½ΡΡΠ½Π° ΡΠΈΡΡΠ΅ΠΌΠ° Π½Π° ΠΎΡΠ½ΠΎΠ²Ρ OKR;
- ΠΠ½Π΄ΠΈΠ²ΡΠ΄ΡΠ°Π»ΡΠ½ΠΈΠΉ ΡΡΡΠ½ΠΈΠΉ Π±ΡΠ΄ΠΆΠ΅Ρ Π½Π° Π½Π°Π²ΡΠ°Π½Π½Ρ, Π· ΠΌΠΎΠΆΠ»ΠΈΠ²ΡΡΡΡ Π²ΡΠ΄Π²ΡΠ΄ΡΠ²Π°Π½Π½Ρ ΠΏΠ»Π°ΡΠ½ΠΈΡ ΠΊΠΎΠ½ΡΠ΅ΡΠ΅Π½ΡΡΠΉ, ΡΡΠ΅Π½ΡΠ½Π³ΡΠ², ΡΡΠΎΠΊΡΠ² Π°Π½Π³Π»ΡΠΉΡΡΠΊΠΎΡ ΠΌΠΎΠ²ΠΈ, ΠΌΠ°ΠΉΡΡΠ΅Ρ-ΠΊΠ»Π°ΡΡΠ² ΡΠΎΡΠΎ;
- Growe University (ΠΡΠ΄Π΅ΡΡΡΠΊΡ ΠΏΡΠΎΠ³ΡΠ°ΠΌΠΈ, ΠΡΠΎΠ³ΡΠ°ΠΌΠΈ ΠΎΠ±ΠΌΡΠ½Ρ Π·Π½Π°Π½Π½ΡΠΌΠΈ, ΠΠ΅Π±ΡΠ½Π°ΡΠΈ,ΡΠΎΡΠΎ);
- ΠΠ΅ΡΡΠΎΠ½Π°Π»ΡΠ½ΠΈΠΉ ΠΏΠ»Π°Π½ ΡΠΎΠ·Π²ΠΈΡΠΊΡ;
- ΠΠΎΡΠΏΠΎΡΠ°ΡΠΈΠ²ΠΈ ΡΠ° ΡΡΠΌΠ±ΡΠ»Π΄ΡΠ½Π³ΠΈ;
- Growe Care (ΠΡΠΎΠ³ΡΠ°ΠΌΠ° ΡΡΡΠ±ΠΎΡΠΈ ΠΏΡΠΎ Π΄ΠΎΠ±ΡΠΎΠ±ΡΡ);
- ΠΠ΅Π·ΠΊΠΎΡΡΠΎΠ²Π½Ρ ΠΎΠ±ΡΠ΄ΠΈ Π² ΠΎΡΡΡΡ.
English version:
Growe welcomes those who are excited to:
- Design, develop, and maintain scalable data pipelines using Airflow;
- Create and optimize tables in Athena, ensuring efficient query performance and cost-effectiveness;
- Write and manage SQL transformations in DBT, building reusable and well-documented models;
- Optimize data workflows for performance, reliability, and cost-efficiency;
- Automate infrastructure provisioning using Terraform for data processing environments;
- Ensure data integrity and consistency through monitoring, validation, and error handling;
- Collaborate with analytics, BI, and engineering teams to understand data needs and deliver solutions.We need your professional experience:
- 1.5+ years of experience in data engineering with a focus on ELT processes;
- Good expertise in Python, SQL, data modeling, and performance optimization;
- Hands-on experience with Airflow DAGs for workflow orchestration;
- Experience with DBT for data transformations and modular modeling;
- Understanding of AWS S3, Athena, and data lake architectures;
- Familiarity with Terraform for infrastructure automation (will be a plus).We appreciate if you have those personal features:
- Strong analytical skills;
- Problem-solving skills;
- Attention to detail.
We are seeking those who align with our core values:
- GROWE TOGETHER: Our team is our main asset. We work together and support each other to achieve our common goals;
- DRIVE RESULT OVER PROCESS: We set ambitious, clear, measurable goals in line with our strategy and driving Growe to success;
- BE READY FOR CHANGE: We see challenges as opportunities to grow and evolve. We adapt today to win tomorrow.
What we offer:
- Medical insurance & financial aid;
- Benefit Cafeteria (compensation for the gym/stomatology/psychological service & etc.);
- 100β% paid sick leaves;
- Paid vacation;
- Annual salary review (based on performance);
- OKR-based bonus system;
- Individual annual training budget which allows to visit paid conferences, training sessions, English lessons, workshops, etc.;
- Growe University (Leadership Programs, Knowledge sharing, Webinars, etc.);
- Personal development plan;
- Corporate events and team-building activities;
- Growe Care (Well-being Program);
- Free lunches at the office.
More -
Β· 48 views Β· 4 applications Β· 9d
Data Engineer
Office Work Β· Ukraine (Kyiv) Β· Product Β· 2 years of experienceΠΡΡΡ β Π΄Π΅ΡΠΆΠ°Π²Π½Π° ΠΎΡΠ²ΡΡΠ½Ρ Π΅ΠΊΠΎΡΠΈΡΡΠ΅ΠΌΠ° Π΄Π»Ρ ΡΡΠ½ΡΠ², Π±Π°ΡΡΠΊΡΠ²/ΠΎΠΏΡΠΊΡΠ½ΡΠ² Ρ Π²ΡΠΈΡΠ΅Π»ΡΠ², ΡΠΎ Π½Π°Π΄ΠΈΡ Π°Ρ Π²ΡΠΈΡΠΈΡΡ ΡΠ° Π΄ΠΎΠΏΠΎΠΌΠ°Π³Π°Ρ Π·Π½Π°ΠΉΡΠΈ ΡΠ΅Π±Π΅ Π² ΡΡΡΠ°ΡΠ½ΠΎΠΌΡ ΡΠ²ΡΡΡ. Π¦Π΅ ΡΠ½ΡΡΡΠ°ΡΠΈΠ²Π° ΠΡΠ΅Π·ΠΈΠ΄Π΅Π½ΡΠ° Π£ΠΊΡΠ°ΡΠ½ΠΈ ΠΠΎΠ»ΠΎΠ΄ΠΈΠΌΠΈΡΠ° ΠΠ΅Π»Π΅Π½ΡΡΠΊΠΎΠ³ΠΎ, ΡΠΊΡ ΡΠ΅Π°Π»ΡΠ·ΡΡΡΡ ΠΡΠ½ΡΠΈΡΡΠΈ ΡΠ° ΠΠΠ Π·Π° ΠΏΡΠ΄ΡΡΠΈΠΌΠΊΠΈ ΠΡΠΎΠ³ΡΠ°ΠΌΠΈ EGAP,...ΠΡΡΡ β Π΄Π΅ΡΠΆΠ°Π²Π½Π° ΠΎΡΠ²ΡΡΠ½Ρ Π΅ΠΊΠΎΡΠΈΡΡΠ΅ΠΌΠ° Π΄Π»Ρ ΡΡΠ½ΡΠ², Π±Π°ΡΡΠΊΡΠ²/ΠΎΠΏΡΠΊΡΠ½ΡΠ² Ρ Π²ΡΠΈΡΠ΅Π»ΡΠ², ΡΠΎ Π½Π°Π΄ΠΈΡ Π°Ρ Π²ΡΠΈΡΠΈΡΡ ΡΠ° Π΄ΠΎΠΏΠΎΠΌΠ°Π³Π°Ρ Π·Π½Π°ΠΉΡΠΈ ΡΠ΅Π±Π΅ Π² ΡΡΡΠ°ΡΠ½ΠΎΠΌΡ ΡΠ²ΡΡΡ. Π¦Π΅ ΡΠ½ΡΡΡΠ°ΡΠΈΠ²Π° ΠΡΠ΅Π·ΠΈΠ΄Π΅Π½ΡΠ° Π£ΠΊΡΠ°ΡΠ½ΠΈ ΠΠΎΠ»ΠΎΠ΄ΠΈΠΌΠΈΡΠ° ΠΠ΅Π»Π΅Π½ΡΡΠΊΠΎΠ³ΠΎ, ΡΠΊΡ ΡΠ΅Π°Π»ΡΠ·ΡΡΡΡ ΠΡΠ½ΡΠΈΡΡΠΈ ΡΠ° ΠΠΠ Π·Π° ΠΏΡΠ΄ΡΡΠΈΠΌΠΊΠΈ ΠΡΠΎΠ³ΡΠ°ΠΌΠΈ EGAP, ΡΠΎ Π²ΠΈΠΊΠΎΠ½ΡΡΡΡΡΡ Π€ΠΎΠ½Π΄ΠΎΠΌ Π‘Ρ ΡΠ΄Π½Π° ΠΠ²ΡΠΎΠΏΠ° ΠΊΠΎΡΡΠΎΠΌ Π¨Π²Π΅ΠΉΡΠ°ΡΡΡ. Π―ΠΊΡΠΎ Ρ ΠΎΡΠ΅ΡΠ΅ Π±ΡΡΠΈ Π² ΠΊΠΎΠΌΠ°Π½Π΄Ρ ΡΠΈΡ , Ρ ΡΠΎ Π·ΠΌΡΠ½ΡΡ ΠΏΡΠ΄Ρ ΡΠ΄ Π΄ΠΎ ΠΎΡΠ²ΡΡΠΈ, β Ρ ΡΡΡΡΡ Π²ΡΠ΄Π³ΡΠΊΡΠΉΡΠ΅ΡΡ Π½Π° Π²Π°ΠΊΠ°Π½ΡΡΡ!
Π¨ΡΠΊΠ°ΡΠΌΠΎ Π»ΡΠ΄ΠΈΠ½Ρ Π² ΠΊΠΎΠΌΠ°Π½Π΄Ρ, ΡΠΊΠ° Π΄ΠΎΠΏΠΎΠΌΠΎΠΆΠ΅ Π½Π°ΠΌ ΠΌΠ°ΡΡΡΠ°Π±ΡΠ²Π°ΡΠΈ ΡΠ° Π²Π΄ΠΎΡΠΊΠΎΠ½Π°Π»ΠΈΡΠΈ Π½Π°ΡΡ ΡΠ½ΡΡΠ°ΡΡΡΡΠΊΡΡΡΡ Π΄Π°Π½ΠΈΡ Ρ DWH, ΠΏΡΠ°ΡΡΡΡΠΈ ΡΠ°Π·ΠΎΠΌ ΡΠ· ΠΏΡΠΎΠ΄ΡΠΊΡΠΎΠ²ΠΎΡ, Π°Π½Π°Π»ΡΡΠΈΡΠ½ΠΎΡ ΡΠ° ΡΠ½ΠΆΠ΅Π½Π΅ΡΠ½ΠΎΡ ΠΊΠΎΠΌΠ°Π½Π΄Π°ΠΌΠΈ.ΠΠ»ΡΡΠΎΠ²ΠΈΠΉ Π²ΠΈΠΊΠ»ΠΈΠΊ β ΠΏΠΎΠ±ΡΠ΄ΡΠ²Π°ΡΠΈ ΡΡΠ°Π±ΡΠ»ΡΠ½Ρ, ΠΌΠ°ΡΡΡΠ°Π±ΠΎΠ²Π°Π½Ρ ΡΠ° Π΅ΠΊΠΎΠ½ΠΎΠΌΡΡΠ½ΠΎ Π΅ΡΠ΅ΠΊΡΠΈΠ²Π½Ρ Π΄Π°ΡΠ°-ΡΠ½ΡΡΠ°ΡΡΡΡΠΊΡΡΡΡ, ΡΠΊΠ° Π΄ΠΎΠ·Π²ΠΎΠ»ΠΈΡΡ ΠΏΡΠΎΠ΄ΡΠΊΡΠ°ΠΌ ΡΠ²ΠΈΠ΄ΠΊΠΎ Π·Π°ΠΏΡΡΠΊΠ°ΡΠΈ Π°Π½Π°Π»ΡΡΠΈΠΊΡ, ΡΠ΅ΡΡΡΠ²Π°ΡΠΈ Π³ΡΠΏΠΎΡΠ΅Π·ΠΈ ΡΠ° ΠΏΡΠΈΠΉΠΌΠ°ΡΠΈ ΡΡΡΠ΅Π½Π½Ρ Π½Π° ΠΎΡΠ½ΠΎΠ²Ρ Π΄Π°Π½ΠΈΡ .
ΠΡΠ½ΠΎΠ²Π½Π° ΠΌΠ΅ΡΠ° β Π·Π°Π±Π΅Π·ΠΏΠ΅ΡΠΈΡΠΈ ΠΏΠΎΠ²Π½ΠΈΠΉ ΡΠΈΠΊΠ» ΠΎΠ±ΡΠΎΠ±ΠΊΠΈ Π΄Π°Π½ΠΈΡ : Π²ΡΠ΄ ΡΠ½ΡΠ΅Π³ΡΠ°ΡΡΡ Π· Π·ΠΎΠ²Π½ΡΡΠ½ΡΠΌΠΈ Π΄ΠΆΠ΅ΡΠ΅Π»Π°ΠΌΠΈ ΡΠ° ΠΏΠΎΠ±ΡΠ΄ΠΎΠ²ΠΈ ΠΏΠ°ΠΉΠΏΠ»Π°ΠΉΠ½ΡΠ² Π΄ΠΎ Π·ΡΡΡΠ½ΠΎΡ Π°Π½Π°Π»ΡΡΠΈΡΠ½ΠΎΡ Π·Π²ΡΡΠ½ΠΎΡΡΡ Π½Π° ΠΎΡΠ½ΠΎΠ²Ρ ΡΠΊΡΡΠ½ΠΈΡ Π΄Π°Π½ΠΈΡ Π² DWH.
ΠΠ°ΡΠ° ΠΊΠΎΠΌΠ°Π½Π΄Π° ΡΡΠΊΠ°Ρ Π»ΡΠ΄ΠΈΠ½Ρ, ΡΠΊΠ°:
- ΠΠ°Ρ Π΄ΠΎΡΠ²ΡΠ΄ ΡΠΎΠ±ΠΎΡΠΈ Π½Π° ΠΏΠΎΠ·ΠΈΡΡΡ Data Engineer Π²ΡΠ΄ 2 ΡΠΎΠΊΡΠ², Π²ΠΊΠ»ΡΡΠ½ΠΎ Π· ΠΏΠΎΠ±ΡΠ΄ΠΎΠ²ΠΎΡ, ΠΎΠΏΡΠΈΠΌΡΠ·Π°ΡΡΡΡ ΡΠ° ΠΏΡΠ΄ΡΡΠΈΠΌΠΊΠΎΡ Π΄Π°ΡΠ°-ΠΏΠ°ΠΉΠΏΠ»Π°ΠΉΠ½ΡΠ² Ρ Ρ ΠΌΠ°ΡΠ½ΠΎΠΌΡ ΡΠ΅ΡΠ΅Π΄ΠΎΠ²ΠΈΡΡ
- Π ΠΎΠ·ΡΠΌΡΡΡΡΡΡ Π½Π° Π°ΡΡ ΡΡΠ΅ΠΊΡΡΡΡ Data Warehouse ΡΠ° ΠΌΠ°Ρ ΠΏΡΠ°ΠΊΡΠΈΡΠ½ΠΈΠΉ Π΄ΠΎΡΠ²ΡΠ΄ ΡΠ· Google Cloud Platform (BigQuery, Cloud Storage, Dataflow, Pub/Sub, Cloud Composer)
- Π£ΠΌΡΡ Π±ΡΠ΄ΡΠ²Π°ΡΠΈ ETL/ELT ΠΏΡΠΎΡΠ΅ΡΠΈ Π· ΡΡΠ°Ρ ΡΠ²Π°Π½Π½ΡΠΌ ΠΌΠ°ΡΡΡΠ°Π±ΠΎΠ²Π°Π½ΠΎΡΡΡ, fault-tolerance Ρ ΠΎΠΏΡΠΈΠΌΡΠ·Π°ΡΡΡ Π²Π°ΡΡΠΎΡΡΡ
- ΠΠΎΠ»ΠΎΠ΄ΡΡ Π½Π°Π²ΠΈΡΠΊΠ°ΠΌΠΈ Π½Π°ΠΏΠΈΡΠ°Π½Π½Ρ ΡΠΈΡΡΠΎΠ³ΠΎ, ΡΠ΅ΡΡΠΎΠ²Π°Π½ΠΎΠ³ΠΎ ΡΠ° ΠΏΡΠ΄ΡΡΠΈΠΌΡΠ²Π°Π½ΠΎΠ³ΠΎ ΠΊΠΎΠ΄Ρ Π½Π° Python (Π°Π±ΠΎ ΡΠ½ΡΡΠΉ ΠΌΠΎΠ²Ρ Π΄Π»Ρ ΠΎΠ±ΡΠΎΠ±ΠΊΠΈ Π΄Π°Π½ΠΈΡ )
- Π£ΠΌΡΡ ΠΏΡΠ°ΡΡΠ²Π°ΡΠΈ Π² ΠΊΠΎΠΌΠ°Π½Π΄Ρ, ΠΌΠ°Ρ Π΄ΠΎΡΠ²ΡΠ΄ ΡΡΠ°ΡΡΡ Π² ΠΊΡΠΎΡ-ΡΡΠ½ΠΊΡΡΠΎΠ½Π°Π»ΡΠ½ΠΈΡ ΠΏΡΠΎΡΠΊΡΠ°Ρ ΡΠ°Π·ΠΎΠΌ Π· Π°Π½Π°Π»ΡΡΠΈΠΊΠ°ΠΌΠΈ, ΠΏΡΠΎΠ΄ΡΠΊΡΠΎΠ»ΠΎΠ³Π°ΠΌΠΈ ΡΠ° ΡΠ½ΠΆΠ΅Π½Π΅ΡΠ°ΠΌΠΈ
- ΠΠ°Ρ Π½Π°Π²ΠΈΡΠΊΠΈ ΡΠΎΠ±ΠΎΡΠΈ Π· CI/CD (Π½Π°ΠΏΡΠΈΠΊΠ»Π°Π΄, GitHub Actions, Cloud Build), ΠΌΠΎΠ½ΡΡΠΎΡΠΈΠ½Π³ΠΎΠΌ ΠΏΡΠΎΡΠ΅ΡΡΠ² (Stackdriver, Grafana) ΡΠ° Π½Π°Π»Π°ΡΡΡΠ²Π°Π½Π½ΡΠΌ Π°Π»Π΅ΡΡΡΠ²
Π’Π°ΠΊΠΎΠΆ Π±ΡΠ΄Π΅ ΠΏΠ΅ΡΠ΅Π²Π°Π³ΠΎΡ, ΡΠΊΡΠΎ Π²ΠΈ ΠΌΠ°ΡΡΠ΅ Π΄ΠΎΡΠ²ΡΠ΄ ΡΠ·:
- ΠΠ·Π°ΡΠΌΠΎΠ΄ΡΡΡ Π· Data Science ΠΊΠΎΠΌΠ°Π½Π΄ΠΎΡ β ΡΠ΅ ΠΏΡΠ΄ΡΡΠΈΠΌΠΊΠ° ΠΏΠ°ΠΉΠΏΠ»Π°ΠΉΠ½ΡΠ² Π΄Π»Ρ ΡΡΠ΅Π½ΡΠ²Π°Π½Π½Ρ ΡΠ° Π΄Π΅ΠΏΠ»ΠΎΡ ΠΌΠΎΠ΄Π΅Π»Π΅ΠΉ, ΠΏΡΠ΄Π³ΠΎΡΠΎΠ²ΠΊΠ° ΡΡΡΠ΅Π²ΠΈΡ Π΄Π°ΡΠ°ΡΠ΅ΡΡΠ², Π·Π°Π±Π΅Π·ΠΏΠ΅ΡΠ΅Π½Π½Ρ Π²ΡΠ΄ΡΠ²ΠΎΡΡΠ²Π°Π½ΠΎΡΡΡ Π΅ΠΊΡΠΏΠ΅ΡΠΈΠΌΠ΅Π½ΡΡΠ²
- ΠΠΎΠ±ΡΠ΄ΠΎΠ²ΠΎΡ ΠΏΠ°ΠΉΠΏΠ»Π°ΠΉΠ½ΡΠ² Π΄Π»Ρ ΠΏΠΎΡΡΠ°Π²ΠΊΠΈ Π΄Π°Π½ΠΈΡ Π΄Π»Ρ ML-ΠΌΠΎΠ΄Π΅Π»Π΅ΠΉ ΡΠ° Π½Π°ΠΏΠΎΠ²Π½Π΅Π½Π½Ρ feature stores
- Π ΠΎΠ±ΠΎΡΠΎΡ Π· Π³ΡΠ°ΡΠΎΠ²ΠΈΠΌΠΈ Π±Π°Π·Π°ΠΌΠΈ Π΄Π°Π½ΠΈΡ (Π½Π°ΠΏΡΠΈΠΊΠ»Π°Π΄, Neo4j) Π΄Π»Ρ ΠΏΠΎΠ±ΡΠ΄ΠΎΠ²ΠΈ ΠΎΠ½ΡΠΎΠ»ΠΎΠ³ΡΠΉ ΡΠ° Π³ΡΠ°ΡΡΠ² Π·Π½Π°Π½Ρ
- ΠΠ½ΡΠ΅Π³ΡΠ°ΡΡΡΡ Π· vector stores (Qdrant, Pinecone, FAISS ΡΠΎΡΠΎ) Π΄Π»Ρ Π·Π±Π΅ΡΡΠ³Π°Π½Π½Ρ Π΅ΠΌΠ±Π΅Π΄ΡΠ½Π³ΡΠ² ΡΠ° ΠΏΠΎΡΡΠΊΡ
- ΠΠ°ΠΉΠΏΠ»Π°ΠΉΠ½Π°ΠΌΠΈ Π/Π ΡΠ΅ΡΡΡΠ², Π·ΠΎΠΊΡΠ΅ΠΌΠ° Π· ΡΠΎΡΠΊΠΈ Π·ΠΎΡΡ ΡΡΠ΅ΠΊΡΠ½Π³Ρ, Π·Π±ΠΎΡΡ, ΠΎΠ±ΡΠΎΠ±ΠΊΠΈ ΠΉ Π°Π½Π°Π»ΡΡΠΈΠΊΠΈ ΡΠ΅Π·ΡΠ»ΡΡΠ°ΡΡΠ² Π΅ΠΊΡΠΏΠ΅ΡΠΈΠΌΠ΅Π½ΡΡΠ²
- ΠΠΈΠΊΠΎΡΠΈΡΡΠ°Π½Π½ΡΠΌ LLM ΠΌΠΎΠ΄Π΅Π»Π΅ΠΉ Π°Π±ΠΎ ΡΡ
ΠΏΡΠΎΠ²Π°ΠΉΠ΄Π΅ΡΡΠ² (OpenAI, Gemini ΡΠΎΡΠΎ) Π΄Π»Ρ Π²ΠΈΠ΄ΡΠ»Π΅Π½Π½Ρ ΠΎΠ·Π½Π°ΠΊ ΡΠ° ΠΎΠ±ΡΠΎΠ±ΠΊΠΈ ΡΠ΅ΠΊΡΡΡΠ²
Π§ΠΈΠΌ Π²ΠΈ Π±ΡΠ΄Π΅ΡΠ΅ Π·Π°ΠΉΠΌΠ°ΡΠΈΡΡ:
- ΠΡΠΎΠ²ΠΎΠ΄ΠΈΡΠΈ ΡΠ½ΡΠ΅Π³ΡΠ°ΡΡΡ Π΄Π°Π½ΠΈΡ ΡΠ· Π·ΠΎΠ²Π½ΡΡΠ½ΡΡ Π΄ΠΆΠ΅ΡΠ΅Π» (API, SQL, CSV, JSON ΡΠΎΡΠΎ) Ρ Π½Π°ΡΡ DWH-Π°ΡΡ ΡΡΠ΅ΠΊΡΡΡΡ Π½Π° Π±Π°Π·Ρ GCP
- ΠΡΠΎΠΏΠΎΠ½ΡΠ²Π°ΡΠΈ ΡΡΡΠ΅Π½Π½Ρ Π΄Π»Ρ ΠΎΠΏΡΠΈΠΌΡΠ·Π°ΡΡΡ Π½Π°ΡΠ²Π½ΠΈΡ ΠΏΠ°ΠΉΠΏΠ»Π°ΠΉΠ½ΡΠ² ΡΠ° ΡΡΡΡΠΊΡΡΡΠΈ Π·Π±Π΅ΡΠ΅ΠΆΠ΅Π½Π½Ρ Π΄Π°Π½ΠΈΡ , ΡΠΎΠ± Π·ΠΌΠ΅Π½ΡΠΈΡΠΈ Π²ΠΈΡΡΠ°ΡΠΈ ΡΠ° ΠΏΡΠΈΡΠ²ΠΈΠ΄ΡΠΈΡΠΈ ΠΎΠ±ΡΠΎΠ±ΠΊΡ
- ΠΡΠ΄ΡΡΠΈΠΌΡΠ²Π°ΡΠΈ ΡΡΠ°Π±ΡΠ»ΡΠ½ΡΡΡΡ Ρ Π±Π΅Π·ΠΏΠ΅ΡΠ΅ΡΠ²Π½ΡΡΡΡ ΡΠΎΠ±ΠΎΡΠΈ ΠΏΠ°ΠΉΠΏΠ»Π°ΠΉΠ½ΡΠ², Π°Π²ΡΠΎΠΌΠ°ΡΠΈΠ·ΡΠ²Π°ΡΠΈ ΡΡ ΠΌΠΎΠ½ΡΡΠΎΡΠΈΠ½Π³ Ρ Π»ΠΎΠ³ΡΠ²Π°Π½Π½Ρ
- Π‘ΠΏΡΠ²ΠΏΡΠ°ΡΡΠ²Π°ΡΠΈ Π· ΡΠ½ΡΠΈΠΌΠΈ Π²ΡΠ΄Π΄ΡΠ»Π°ΠΌΠΈ, ΡΠΎΠ± Π·Π°Π±Π΅Π·ΠΏΠ΅ΡΠΈΡΠΈ ΠΊΠΎΡΠ΅ΠΊΡΠ½Ρ ΡΠ½ΡΠ΅Π³ΡΠ°ΡΡΡ ΠΏΠΎΠ΄ΡΠΉ, ΡΡΠ΅ΠΊΡΠ½Π³Ρ, Π·Π²ΡΡΡΠ² ΡΠ° ΠΌΠΎΠ΄Π΅Π»Π΅ΠΉ ΠΌΠ°ΡΠΈΠ½Π½ΠΎΠ³ΠΎ Π½Π°Π²ΡΠ°Π½Π½Ρ
- ΠΠ»Π°Π½ΡΠ²Π°ΡΠΈ ΠΌΠ°ΡΡΡΠ°Π±ΡΠ²Π°Π½Π½Ρ ΡΠ½ΡΡΠ°ΡΡΡΡΠΊΡΡΡΠΈ Π΄Π»Ρ ΠΏΡΠ΄ΡΡΠΈΠΌΠΊΠΈ Π·ΡΠΎΡΡΠ°ΡΡΠΈΡ ΠΎΠ±ΡΡΠ³ΡΠ² Π΄Π°Π½ΠΈΡ ΡΠ° Π½ΠΎΠ²ΠΈΡ ΠΏΡΠΎΠ΄ΡΠΊΡΡΠ²
- ΠΠΎΡΡΠ²Π°ΡΠΈ Π΄ΠΎΠΊΡΠΌΠ΅Π½ΡΠ°ΡΡΡ ΠΏΠΎ dataflow, ΡΡ Π΅ΠΌΠ°Ρ ΡΠ°Π±Π»ΠΈΡΡ, ΠΏΠΎΠ»ΡΡΠΈΠΊΠ°Ρ Π΄ΠΎΡΡΡΠΏΡ ΡΠ° ΡΠΏΠ΅ΡΠΈΡΡΠΊΠ°ΡΡΡΡ API Π΄Π»Ρ ΡΠΎΠ·ΡΠΎΠ±Π½ΠΈΠΊΡΠ² ΡΠ° Π°Π½Π°Π»ΡΡΠΈΠΊΡΠ²
ΠΠ°ΡΠ° ΡΠΎΠ±ΠΎΡΠ° Π² ΠΊΠΎΠΌΠ°Π½Π΄Ρ ΠΡΡΡ:
- ΠΠΎΠ²Π½Π° Π·Π°ΠΉΠ½ΡΡΡΡΡΡ
- ΠΠ΅ΡΡΡ Π΄Π²Π° ΠΌΡΡΡΡΡ β ΡΠΎΠ±ΠΎΡΠ° Π² ΠΎΡΡΡΡ (Ρ ΡΠΊΡΠΈΡΡΡ), ΠΏΡΡΠ»Ρ β Π³ΡΠ±ΡΠΈΠ΄Π½ΠΈΠΉ Π³ΡΠ°ΡΡΠΊ
- ΠΡΡΡΡΠΉΠ½Π΅ ΠΏΡΠ°ΡΠ΅Π²Π»Π°ΡΡΡΠ²Π°Π½Π½Ρ
- Π ΠΎΠ±ΠΎΡΠ° Π½Π°Π΄ ΠΏΠΎ-ΡΠΏΡΠ°Π²ΠΆΠ½ΡΠΎΠΌΡ Π²Π°ΠΆΠ»ΠΈΠ²ΠΈΠΌ Π΄Π»Ρ Π£ΠΊΡΠ°ΡΠ½ΠΈ ΠΏΡΠΎΡΠΊΡΠΎΠΌ
- ΠΠΎΠΌΠ°Π½Π΄Π° ΠΡΡΡ Π² ΠΏΡΡΠΌΠΎΠΌΡ ΡΠ΅Π½ΡΡ ΡΡΠΎΠ³ΠΎ ΡΠ»ΠΎΠ²Π°
ΠΡΠ°ΠΏΠΈ Π½Π°ΠΉΠΌΡ: ΡΠΏΡΠ²Π±Π΅ΡΡΠ΄Π° Π· HR (30 Ρ Π²) β> ΡΠ΅Ρ Π½ΡΡΠ½Π° ΡΠΏΡΠ²Π±Π΅ΡΡΠ΄Π° Π· live coding ΡΠ΅ΡΡΡΡ (90 Ρ Π²) β> ΠΊΠ°Π΄ΡΠΎΠ²Π° ΠΏΠ΅ΡΠ΅Π²ΡΡΠΊΠ° β> ΡΡΠ½Π°Π»ΡΠ½Π° ΡΠΏΡΠ²Π±Π΅ΡΡΠ΄Π° (15 Ρ Π²)
Π―ΠΊΡΠΎ ΡΠ΅ Π½Π΅ Π΄Π»Ρ Π²Π°Ρ, Π°Π»Π΅ Π²ΠΈ Π·Π½Π°ΡΡΠ΅ Π»ΡΠ΄ΠΈΠ½Ρ, ΡΠΊΠ° ΡΡΠ²ΠΎΡΠ΅Π½Π° Π΄Π»Ρ ΡΡΡΡ Π²Π°ΠΊΠ°Π½ΡΡΡ, β ΠΏΠΎΡΠ΅ΠΊΠΎΠΌΠ΅Π½Π΄ΡΠΉΡΠ΅, Π±ΡΠ΄Ρ Π»Π°ΡΠΊΠ°!
More