Jobs Dnipro
9-
Β· 13 views Β· 2 applications Β· 7d
Senior Data Scientist / Senior Machine Learning Engineer - AI at Massive Scale
Hybrid Remote Β· Ukraine (Dnipro, Lviv) Β· Product Β· 4 years of experience Β· B1 - IntermediateHelp us push AI further β and faster LoopMeβs Data Science team builds production AI that powers real-time decisions for campaigns seen by hundreds of millions of people every day. We process billions of data points daily β and we donβt just re-apply old...Help us push AI further β and faster
LoopMeβs Data Science team builds production AI that powers real-time decisions for campaigns seen by hundreds of millions of people every day. We process billions of data points daily β and we donβt just re-apply old tricks. We design and deploy genuinely novel machine learning systems, from idea to prototype to production.
Youβll join a high-trust team that has a 5-star Glassdoor rating led by Leonard Newnham, where your work moves fast, ships to production, and makes measurable impact.
What youβll do:
- Design, build, and run large-scale ML pipelines that process terabytes of data
- Apply a mix of supervised learning, custom algorithms, and statistical modelling to real-world problems
- Ship production-grade Python code thatβs clear, documented, and tested
- Work in small, agile squads (3β4 people) with DS, ML, and engineering peers
- Partner with product and engineering to take models from idea β production β impact
- Work with Google Cloud, Docker, Kafka, Spark, Airflow, ElasticSearch, ClickHouse and more
What you bring:
- Bachelorβs degree in Computer Science, Maths, Engineering, Physics or similar (MSc/PhD a plus)
- 4+ yearsβ commercial Python experience
- Track record building ML pipelines that handle large-scale data
- Excellent communication skills β comfortable working across time zones
- A curious, scientific mindset β you ask βwhy?β and prove the answer
Bonus if you have:
- Experience with adtech or real-time bidding
- Agile / Scrum experience
- Knowledge of high-availability infrastructure (ElasticSearch, Kafka, ClickHouse)
- Airflow expertise
About the Data Science Team:
Weβre 17 ML engineers, data scientists, and data engineers, distributed across London, Poland, and Ukraine β acting as one team, not a satellite office.
What sets us apart:
- Led by an experienced Chief Data Scientist who codes, leads, and listens
- Inclusive, supportive culture where ideas are heard and people stay
- Strong values: open communication, continual innovation, fair treatment, and high standards
- Track record of publishing award-winning research in automated bidding
Donβt just take our word for it β check our Glassdoor reviews (search βData Scientistβ) for a real view of the culture.
About LoopMe:
LoopMe was founded to close the loop on brand advertising. Our platform combines AI, mobile data, and attribution to deliver measurable brand outcomes β from purchase intent to foot traffic. Founded in 2012, we now have offices in New York, London, Chicago, LA, Dnipro, Singapore, Beijing, Dubai and more.
What we offer:
- Competitive salary + bonus
- Billions of real-world data points to work with daily
- Flexible remote/hybrid options
- Learning budget and career growth support
- Friendly, transparent culture with strong leadership
Hiring process:
- Intro with Talent Partner
- 30-min technical interview with Chief Data Scientist
- Panel with 2 team members (technical, culture & collaboration)
- Offer β usually within 48 hours of final round
Are you ready to design and deploy AI systems that run at truly massive scale?
More -
Β· 25 views Β· 0 applications Β· 29d
AI and ML Engineer
Hybrid Remote Β· Ukraine (Dnipro, Kyiv, Lviv + 2 more cities) Β· 5 years of experience Β· B2 - Upper IntermediatePosition overview We are seeking a highly skilled AI & ML Engineer to join our innovative team. In this role, you will lead the development, optimization, and deployment of advanced machine learning and artificial intelligence models. You will drive...Position overview
We are seeking a highly skilled AI & ML Engineer to join our innovative team. In this role, you will lead the development, optimization, and deployment of advanced machine learning and artificial intelligence models. You will drive state-of-the-art research, build scalable pipelines, and collaborate with cross-functional teams to translate business needs into effective ML solutions.
This position offers the opportunity to work on cutting-edge technologies in a dynamic, fast-paced environment, contributing to impactful projects that power next-generation AI applications.Responsibilities
- Design, implement, and optimize machine learning and AI models, including classification, regression, clustering, and agent tuning.
- Experiment with the latest methods, frameworks, and architectures to enhance model performance and efficiency.
- Develop robust, scalable ML pipelines for training, validation, and inference.
- Deploy ML models into production environments (cloud or on-prem), ensuring high reliability, low latency, and scalability.
- Apply MLOps best practices including CI/CD, monitoring, automated retraining, and model registry management.
- Partner with data engineering teams to source, clean, and transform large datasets for model training and inference.
- Ensure high data quality, perform feature engineering, and support real-time data integration processes.
- Work closely with data scientists, software engineers, and product managers to align ML solutions with business goals.
- Clearly communicate complex technical results to both technical and non-technical stakeholders.
- Provide technical guidance and mentorship to junior ML engineers and data scientists.
- Contribute to establishing team best practices, code reviews, and architectural decisions.
Requirements
- 5+ years of professional experience in machine learning, AI engineering, or related fields.
- Masterβs degree in Computer Science, Machine Learning, Physics, or related field; PhD preferred.
- Proficient in Python and ML frameworks such as TensorFlow, PyTorch, and Scikit-learn.
- Strong understanding of algorithms, statistics, probability, and linear algebra.
- Hands-on experience with data pipelines and ETL tools (e.g., Spark, AWS Lambda, AWS Glue).
- Practical experience with cloud platforms, preferably AWS.
- Solid software engineering fundamentals including version control (Git), testing, and design patterns.
- Demonstrated success in deploying ML models into production at scale.
- Familiarity with MLOps tools such as MLflow, Kubeflow, SageMaker, or Vertex AI.
- Excellent analytical, problem-solving, and communication skills.
- Ability to work autonomously and collaboratively within a fast-paced, cross-functional team environment.
Nice to have
- Experience with agentic frameworks like LangChain or LangGraph
-
Β· 17 views Β· 0 applications Β· 23d
Senior ML Engineer
Hybrid Remote Β· Ukraine (Dnipro, Kyiv, Lviv + 2 more cities) Β· 4 years of experience Β· B2 - Upper IntermediatePosition overview DataArt is a global software engineering firm and a trusted technology partner for market leaders and visionaries. Our world-class team designs and engineers data-driven, cloud-native solutions to deliver immediate and enduring...Position overview
DataArt is a global software engineering firm and a trusted technology partner for market leaders and visionaries. Our world-class team designs and engineers data-driven, cloud-native solutions to deliver immediate and enduring business value.
We promote a culture of radical respect, prioritizing your personal well-being as much as your expertise. We stand firmly against prejudice and inequality, valuing each of our employees equally.
We respect the autonomy of others before all else, offering remote, onsite, and hybrid work options. Our Learning and development centers, R&D labs, and mentorship programs encourage professional growth.
Our long-term approach to collaboration with clients and colleagues alike focuses on building partnerships that extend beyond one-off projects. We provide the ability to switch between projects and technology stacks, creating opportunities for exploration through our learning and networking systems to advance your career.
We are looking for a Senior Machine Learning Engineer to design, develop, and deploy advanced ML models focused on betting position forecasting, real-time analytics, and anomaly detection. The ideal candidate will have strong expertise in time series forecasting, predictive modeling, and scalable production deployment. You will work closely with cross-functional teams to integrate machine learning solutions that drive data-driven decision-making in a fast-paced betting environment, ensuring high model accuracy and reliability.Responsibilities
- Design and develop machine learning models for betting position forecasting and recommendation systems
- Build and deploy predictive analytics solutions delivering real-time betting insights
- Implement anomaly detection systems to identify unusual betting patterns and potential risks
- Develop pattern recognition algorithms for market trend analysis and user behavior prediction
- Ensure scalable, reliable deployment of ML models within production betting environments
- Monitor, evaluate, and optimize model performance and accuracy continuously
- Collaborate closely with development teams to integrate ML solutions into betting platforms
Requirements
- Strong proficiency in Python and core ML libraries (e.g., scikit-learn, TensorFlow, PyTorch)
- Proven experience in time series forecasting, predictive modeling, and anomaly detection
- Solid grasp of statistical analysis and probability theory relevant to betting/gaming contexts
- Hands-on experience deploying ML models in real-time production environments
- Expertise in data preprocessing, feature engineering, and model validation techniques
- Familiarity with ML Ops best practices including model monitoring and versioning
Nice to have
- Experience with Azure ML or similar cloud ML platforms
- Knowledge of databases, data pipelines, and data engineering fundamentals
- Understanding of A/B testing and experimentation frameworks
- Experience with containerization tools like Docker and CI/CD pipelines
-
Β· 24 views Β· 0 applications Β· 23d
AI Engineer
Hybrid Remote Β· Ukraine (Dnipro, Kyiv, Lviv + 2 more cities) Β· 4 years of experience Β· B2 - Upper IntermediatePosition overview We are seeking an AI Engineer with a strong software engineering background, proficient in Python and modern cloud-native technologies. The ideal candidate has hands-on experience with Snowflake, BigQuery, or AWS data platforms and...Position overview
We are seeking an AI Engineer with a strong software engineering background, proficient in Python and modern cloud-native technologies. The ideal candidate has hands-on experience with Snowflake, BigQuery, or AWS data platforms and solid expertise in data engineering, including ETL, Spark, Spark Streaming, Jupyter Notebooks, data quality, and medallion architecture and design.
Experience with machine learning best practices such as model training, evaluation, and weighting is essential.Responsibilities
- Design, develop, and deploy scalable AI and machine learning models.
- Build and maintain data pipelines and ETL processes using Spark, Spark Streaming, and related tools.
- Ensure high data quality and implement medallion architecture design principles.
- Collaborate with data scientists, engineers, and product teams to translate requirements into technical solutions.
- Implement best practices for model training, evaluation, and performance tuning.
- Develop, integrate, and maintain AI agents and conversational AI solutions where applicable.
Requirements
- Strong software engineering skills (Python, cloud-native stacks)
- Hands-on experience with Snowflake, BigQuery, or AWS data platforms
- Solid data engineering experience (ETL, Spark, Spark Streaming, Jupyter Notebooks, data quality, medallion architecture)
- Knowledge of machine learning best practices (model training, evaluation, weighting)
Nice to have
- Experience building AI agents (Langchain, Langgraph, OpenAI Agents, PydanticAI)
- Experience building conversational AI agents (AI chats, Evaluation-Driven Development)
-
Β· 24 views Β· 0 applications Β· 17d
AI/Machine Learning Engineer
Hybrid Remote Β· Ukraine (Vinnytsia, Dnipro, Kyiv) Β· Product Β· 5 years of experience Β· B2 - Upper IntermediateResponsibilities: Design data science, statistical, machine learning and deep learning systems that influence millions of players Implement and optimize appropriate ML algorithms and tools for time series and tabular data Transform data science prototypes...Responsibilities:
- Design data science, statistical, machine learning and deep learning systems that influence millions of players
- Implement and optimize appropriate ML algorithms and tools for time series and tabular data
- Transform data science prototypes into full-scale products, while deploying and monitoring ML models
- Run live tests and experiments
- Train and retrain systems when necessary
- Create or extend existing ML libraries and frameworks
Collaborate with other scientists, engineers, architects and analysts spread across several countries
Requirements:
Must Haves:
β’βBachelor's or Masterβs degree in Computer Science, Engineering, or a related discipline.
β’β3-5 years as a Backend Engineer, or a similar role, with a consistent record of successfully delivering ML solutions
β’βSolid software engineering skills, including experience with Git, Docker, and CI/CD pipelines.
β’βHands-on experience in designing and deploying systems in Kubernetes environment.
β’βExperience with big data tools i.e. Spark, and working with structured and unstructured data.
β’βExperience with real-time and streaming applications.
β’βAbility to work with cross-functional teams, articulate ML concepts to non-technical stakeholders, and lead projects from concept to execution.
Nice to Have:
β’βExperience as a ML/GEN-AI Engineer, or a similar role.
β’βHigh proficiency in Python, with extensive experience with Python software development, Python-based ML libraries, and API development (FastAPI).
β’βDeep understanding of Python programming principles, including object-oriented programming, asynchronous processing, and memory management.
β’βHands-on experience deploying ML models using tools like BentoML.
β’βExperience with real-time ML applications and streaming data (Kafka, Flink, etc.).
β’βExperience in Large Language Models (LLMs), Retrieval-Augmented Generation (RAG), and AI Agents using frameworks like LangChain and LlamaIndex.Benefits:
- Annual company bonus
- Competitive salary & flexible working hours
- Daily breakfast, lunch, and office refreshments
- Private health insurance, dental coverage, and psychological counseling
- 20 paid vacation days and 5 sick days per year
- 6 long weekends and 1 day off for your birthday
- Gifts for special occasions (birthday, Easter, Christmas, Womenβs and Menβs Day, weddings, childbirth, etc.)
- Technical library with the option to order books
- Access to our educational platform with courses, training programs, and certifications
- Career development through coaching and reviews
- Internal mobility & referral program
- Corporate celebrations, team-building events, and fun activities
- Personal care in the office (nails, eyebrows, and barber services)
- Modern offices (Kyiv, Vinnytsia, Dnipro) with organized shuttle buses to and from the office
-
Β· 46 views Β· 11 applications Β· 10d
AI/ML Engineer
Ukraine Β· 4 years of experience Β· B2 - Upper IntermediateHey! We are Kultprosvet β a team of passionate web and mobile developers who build meaningful products with care. Weβre expanding and looking for an experienced Senior AI/ML Engineer to join our team and take ownership of the AI/ML direction in one of...π Hey! We are Kultprosvet β a team of passionate web and mobile developers who build meaningful products with care.
Weβre expanding and looking for an experienced Senior AI/ML Engineer to join our team and take ownership of the AI/ML direction in one of our key products.πΈ About the Project:
Our platform empowers photographers by combining beautiful online galleries, smart automation, and eCommerce tools.
Through the power of AI and machine learning, we automate image recognition, improve visuals, and unlock new business potential for creatives around the world.Youβll be working on the core AI layer of a high-impact real-world product used by professional photographers and their clients.
β Requirements:
- Strong understanding of data structures, ML algorithms, and data science techniques.
- Solid hands-on experience with Python and tools like NumPy, Pandas, SciPy.
- Experience developing models in PyTorch for computer vision tasks.
- Proven ability to build production-ready ML APIs.
- Proficiency with source code management (e.g., Git).
- Confident spoken English β able to communicate technical decisions clearly.
β Nice to Have:
- Experience with modern AI techniques such as transformers and contrastive pretraining.
You will:
- Design and implement AI/ML algorithms for computer vision tasks (e.g., object recognition, classification, enhancement).
- Build and maintain data and model management infrastructure.
- Organize and run ML model training, tuning, and evaluation.
- Develop and deploy APIs for integrating ML models into the main application.
- Apply best practices in code quality, reproducibility, and performance.
π What We Offer:
π‘ Flexible work setup β remote or from our office in Dnipro.
π° Senior-level compensation, paid vacations, and sick leave.
π©Ί Medical insurance and full accounting support.
π Budget for courses, conferences, and professional development.
π§ Coverage for psychotherapy sessions β your well-being matters.If youβre ready to take full ownership of AI/ML in a fast-moving, high-impact product β letβs talk! π
More -
Β· 17 views Β· 0 applications Β· 3d
AI Engineer
Hybrid Remote Β· Ukraine (Dnipro, Kyiv, Odesa, Kharkiv) Β· 3 years of experience Β· B2 - Upper IntermediateWe are seeking an AI Engineer with a strong software engineering background, proficient in Python and modern cloud-native technologies. The ideal candidate has hands-on experience with Snowflake, BigQuery, or AWS data platforms and solid expertise in...We are seeking an AI Engineer with a strong software engineering background, proficient in Python and modern cloud-native technologies. The ideal candidate has hands-on experience with Snowflake, BigQuery, or AWS data platforms and solid expertise in data engineering, including ETL, Spark, Spark Streaming, Jupyter Notebooks, data quality, and medallion architecture and design.
Experience with machine learning best practices such as model training, evaluation, and weighting is essential.Responsibilities
- Design, develop, and deploy scalable AI and machine learning models.
- Build and maintain data pipelines and ETL processes using Spark, Spark Streaming, and related tools.
- Ensure high data quality and implement medallion architecture design principles.
- Collaborate with data scientists, engineers, and product teams to translate requirements into technical solutions.
- Implement best practices for model training, evaluation, and performance tuning.
- Develop, integrate, and maintain AI agents and conversational AI solutions where applicable.
Requirements
- Strong software engineering skills (Python, cloud-native stacks)
- Hands-on experience with Snowflake, BigQuery, or AWS data platforms
- Solid data engineering experience (ETL, Spark, Spark Streaming, Jupyter Notebooks, data quality, medallion architecture)
- Knowledge of machine learning best practices (model training, evaluation, weighting)
Nice to have
- Experience building AI agents (Langchain, Langgraph, OpenAI Agents, PydanticAI)
- Experience building conversational AI agents (AI chats, Evaluation-Driven Development)
-
Β· 140 views Β· 22 applications Β· 17d
ML Engineer Π² RaccoonDoc
Ukraine Β· Product Β· 1 year of experience Β· B1 - IntermediateΠΡΠΎ Π½Π°Ρ RaccoonDoc β ΡΠ΅ ΡΠ½Π½ΠΎΠ²Π°ΡΡΠΉΠ½Π΅ ΡΡΡΠ΅Π½Π½Ρ Π΄Π»Ρ Π°Π²ΡΠΎΠΌΠ°ΡΠΈΠ·Π°ΡΡΡ ΠΎΠ±ΡΠΎΠ±ΠΊΠΈ ΡΠ° ΡΠΎΠ·ΠΏΡΠ·Π½Π°Π²Π°Π½Π½Ρ Π΄ΠΎΠΊΡΠΌΠ΅Π½ΡΡΠ², ΡΠΎ Π²ΠΈΠΊΠΎΡΠΈΡΡΠΎΠ²ΡΡ ΠΏΠ΅ΡΠ΅Π΄ΠΎΠ²Ρ ΡΠ΅Ρ Π½ΠΎΠ»ΠΎΠ³ΡΡ ΡΡΡΡΠ½ΠΎΠ³ΠΎ ΡΠ½ΡΠ΅Π»Π΅ΠΊΡΡ. ΠΠΈ Π΄ΠΎΠΏΠΎΠΌΠ°Π³Π°ΡΠΌΠΎ ΠΏΡΠ΄ΠΏΡΠΈΡΠΌΡΡΠ²Π°ΠΌ Π°Π²ΡΠΎΠΌΠ°ΡΠΈΠ·ΡΠ²Π°ΡΠΈ ΡΠΎΠ·ΠΏΡΠ·Π½Π°Π²Π°Π½Π½Ρ ΡΠ° Π²ΠΈΡΡΠ³ΡΠ²Π°Π½Π½Ρ Π΄Π°Π½ΠΈΡ Π· Π΄ΠΎΠΊΡΠΌΠ΅Π½ΡΡΠ²...ΠΡΠΎ Π½Π°Ρ
RaccoonDoc β ΡΠ΅ ΡΠ½Π½ΠΎΠ²Π°ΡΡΠΉΠ½Π΅ ΡΡΡΠ΅Π½Π½Ρ Π΄Π»Ρ Π°Π²ΡΠΎΠΌΠ°ΡΠΈΠ·Π°ΡΡΡ ΠΎΠ±ΡΠΎΠ±ΠΊΠΈ ΡΠ° ΡΠΎΠ·ΠΏΡΠ·Π½Π°Π²Π°Π½Π½Ρ Π΄ΠΎΠΊΡΠΌΠ΅Π½ΡΡΠ², ΡΠΎ Π²ΠΈΠΊΠΎΡΠΈΡΡΠΎΠ²ΡΡ ΠΏΠ΅ΡΠ΅Π΄ΠΎΠ²Ρ ΡΠ΅Ρ Π½ΠΎΠ»ΠΎΠ³ΡΡ ΡΡΡΡΠ½ΠΎΠ³ΠΎ ΡΠ½ΡΠ΅Π»Π΅ΠΊΡΡ. ΠΠΈ Π΄ΠΎΠΏΠΎΠΌΠ°Π³Π°ΡΠΌΠΎ ΠΏΡΠ΄ΠΏΡΠΈΡΠΌΡΡΠ²Π°ΠΌ Π°Π²ΡΠΎΠΌΠ°ΡΠΈΠ·ΡΠ²Π°ΡΠΈ ΡΠΎΠ·ΠΏΡΠ·Π½Π°Π²Π°Π½Π½Ρ ΡΠ° Π²ΠΈΡΡΠ³ΡΠ²Π°Π½Π½Ρ Π΄Π°Π½ΠΈΡ Π· Π΄ΠΎΠΊΡΠΌΠ΅Π½ΡΡΠ² Π±ΡΠ΄Ρ-ΡΠΊΠΎΡ ΡΠΊΠ»Π°Π΄Π½ΠΎΡΡΡ, ΡΠΎ Π΄ΠΎΠ·Π²ΠΎΠ»ΡΡ Π·Π½Π°ΡΠ½ΠΎ ΠΏΡΠ΄Π²ΠΈΡΠΈΡΠΈ Π΅ΡΠ΅ΠΊΡΠΈΠ²Π½ΡΡΡΡ Π±ΡΠ·Π½Π΅Ρ-ΠΏΡΠΎΡΠ΅ΡΡΠ². ΠΠ°ΡΠ° ΠΌΡΡΡΡ - Π·Π²ΡΠ»ΡΠ½ΠΈΡΠΈ Π±ΡΠ·Π½Π΅Ρ Π²ΡΠ΄ ΡΡΡΠΈΠ½Π½ΠΎΡ ΡΡΡΠ½ΠΎΡ ΡΠΎΠ±ΠΎΡΠΈ Π· Π΄ΠΎΠΊΡΠΌΠ΅Π½ΡΠ°ΠΌΠΈ, ΠΏΠ΅ΡΠ΅ΡΠ²ΠΎΡΡΡΡΠΈ ΡΡ Π½Π° ΡΡΡΡΠΊΡΡΡΠΎΠ²Π°Π½Ρ Π΄Π°Π½Ρ Π·Π° Π΄ΠΎΠΏΠΎΠΌΠΎΠ³ΠΎΡ ΠΏΠ΅ΡΠ΅Π΄ΠΎΠ²ΠΈΡ ΡΠ΅Ρ Π½ΠΎΠ»ΠΎΠ³ΡΠΉ ΡΡΡΡΠ½ΠΎΠ³ΠΎ ΡΠ½ΡΠ΅Π»Π΅ΠΊΡΡ.ΠΠΈ ΡΡΠΊΠ°ΡΠΌΠΎ ΡΠ°Π»Π°Π½ΠΎΠ²ΠΈΡΠΎΠ³ΠΎ ΡΠ° ΠΌΠΎΡΠΈΠ²ΠΎΠ²Π°Π½ΠΎΠ³ΠΎ Machine Learning Engineer, ΡΠΊΠΈΠΉ ΠΏΡΠΈΡΠ΄Π½Π°ΡΡΡΡΡ Π΄ΠΎ Π½Π°ΡΠΎΡ ΠΊΠΎΠΌΠ°Π½Π΄ΠΈ Π΄Π»Ρ ΡΠΎΠ·ΡΠΎΠ±ΠΊΠΈ ΡΠ° Π²Π΄ΠΎΡΠΊΠΎΠ½Π°Π»Π΅Π½Π½Ρ Π½Π°ΡΠΈΡ AI-ΡΡΡΠ΅Π½Ρ.
Π©ΠΎ ΠΌΠΈ ΡΠΎΠ±ΠΈΠΌΠΎ:
ΠΠ°ΡΠ° ΠΊΠΎΠΌΠ°Π½Π΄Π° ΡΠΎΠ·ΡΠΎΠ±Π»ΡΡ ΡΠ° ΠΏΡΠ΄ΡΡΠΈΠΌΡΡ ΠΌΠΎΠ΄Π΅Π»Ρ Π΄Π»Ρ ΡΠΎΠ·ΠΏΡΠ·Π½Π°Π²Π°Π½Π½Ρ, ΠΊΠ»Π°ΡΠΈΡΡΠΊΠ°ΡΡΡ ΡΠ° Π²ΠΈΠ»ΡΡΠ΅Π½Π½Ρ Π΄Π°Π½ΠΈΡ Π· ΡΡΠ·Π½ΠΎΠΌΠ°Π½ΡΡΠ½ΠΈΡ ΡΠΈΠΏΡΠ² Π΄ΠΎΠΊΡΠΌΠ΅Π½ΡΡΠ². ΠΠΈ ΠΏΡΠ°ΡΡΡΠΌΠΎ Π½Π°Π΄ ΡΠΊΠ»Π°Π΄Π½ΠΈΠΌΠΈ Π·Π°Π²Π΄Π°Π½Π½ΡΠΌΠΈ Π² ΠΎΠ±Π»Π°ΡΡΡ Computer Vision (Object Detection) ΡΠ° Natural Language Processing (NER, Text Classification), Π²ΠΈΠΊΠΎΡΠΈΡΡΠΎΠ²ΡΡΡΠΈ ΡΡΡΠ°ΡΠ½Ρ Π°ΡΡ ΡΡΠ΅ΠΊΡΡΡΠΈ, Π²ΠΊΠ»ΡΡΠ°ΡΡΠΈ ΡΡΠ°Π½ΡΡΠΎΡΠΌΠ΅ΡΠΈ ΡΠ° Π²Π΅Π»ΠΈΠΊΡ ΠΌΠΎΠ²Π½Ρ ΠΌΠΎΠ΄Π΅Π»Ρ (LLM).
Π©ΠΎ Π²Π°ΠΌ Π½Π°Π»Π΅ΠΆΠΈΡΡ ΡΠΎΠ±ΠΈΡΠΈ:- Π ΠΎΠ·ΡΠΎΠ±ΠΊΠ°, ΡΡΠ΅Π½ΡΠ²Π°Π½Π½Ρ ΡΠ° Π²Π΄ΠΎΡΠΊΠΎΠ½Π°Π»Π΅Π½Π½Ρ ΠΌΠΎΠ΄Π΅Π»Π΅ΠΉ ΠΌΠ°ΡΠΈΠ½Π½ΠΎΠ³ΠΎ Π½Π°Π²ΡΠ°Π½Π½Ρ Π΄Π»Ρ ΡΠΎΠ·ΠΏΡΠ·Π½Π°Π²Π°Π½Π½Ρ ΡΠ° Π°Π½Π°Π»ΡΠ·Ρ Π΄ΠΎΠΊΡΠΌΠ΅Π½ΡΡΠ² (Object Detection, NER).
- Π ΠΎΠ±ΠΎΡΠ° Π· Π²Π΅Π»ΠΈΠΊΠΈΠΌΠΈ ΠΌΠΎΠ²Π½ΠΈΠΌΠΈ ΠΌΠΎΠ΄Π΅Π»ΡΠΌΠΈ (LLM) ΡΠ° ΡΡΠ°Π½ΡΡΠΎΡΠΌΠ΅ΡΠ½ΠΈΠΌΠΈ Π°ΡΡ ΡΡΠ΅ΠΊΡΡΡΠ°ΠΌΠΈ Π΄Π»Ρ Π²ΠΈΡΡΡΠ΅Π½Π½Ρ Π·Π°Π²Π΄Π°Π½Ρ ΠΎΠ±ΡΠΎΠ±ΠΊΠΈ ΠΏΡΠΈΡΠΎΠ΄Π½ΠΎΡ ΠΌΠΎΠ²ΠΈ.
- ΠΠ½ΡΠ΅Π³ΡΠ°ΡΡΡ ML-ΠΌΠΎΠ΄Π΅Π»Π΅ΠΉ Π² ΡΡΠ½ΡΡΡΡ ΡΠ½ΡΡΠ°ΡΡΡΡΠΊΡΡΡΡ ΡΠ° ΡΡ ΡΠΎΠ·Π³ΠΎΡΡΠ°Π½Π½Ρ Π² Ρ ΠΌΠ°ΡΠ½ΠΈΡ ΡΠ΅ΡΠ΅Π΄ΠΎΠ²ΠΈΡΠ°Ρ (Azure, AWS).
- Π£ΡΠ°ΡΡΡ Ρ ΠΏΠΎΠ²Π½ΠΎΠΌΡ ΡΠΈΠΊΠ»Ρ ΠΆΠΈΡΡΡ ML-ΡΡΡΠ΅Π½Ρ: Π²ΡΠ΄ Π·Π±ΠΎΡΡ Π΄Π°Π½ΠΈΡ ΡΠ° ΠΏΡΠΎΡΠΎΡΠΈΠΏΡΠ²Π°Π½Π½Ρ Π΄ΠΎ ΡΠΎΠ·Π³ΠΎΡΡΠ°Π½Π½Ρ ΡΠ° ΠΌΠΎΠ½ΡΡΠΎΡΠΈΠ½Π³Ρ.
- ΠΠΏΡΠΈΠΌΡΠ·Π°ΡΡΡ ΡΡΠ½ΡΡΡΠΈΡ ΠΌΠΎΠ΄Π΅Π»Π΅ΠΉ Π΄Π»Ρ ΠΏΠΎΠΊΡΠ°ΡΠ΅Π½Π½Ρ ΡΡ ΡΠΎΡΠ½ΠΎΡΡΡ ΡΠ° ΠΏΡΠΎΠ΄ΡΠΊΡΠΈΠ²Π½ΠΎΡΡΡ.
- Π‘ΠΏΡΠ²ΠΏΡΠ°ΡΡ Π· ΠΊΠΎΠΌΠ°Π½Π΄ΠΎΡ ΡΠΎΠ·ΡΠΎΠ±Π½ΠΈΠΊΡΠ² Π΄Π»Ρ ΡΡΠ²ΠΎΡΠ΅Π½Π½Ρ Π½Π°Π΄ΡΠΉΠ½ΠΈΡ
ΡΠ° ΠΌΠ°ΡΡΡΠ°Π±ΠΎΠ²Π°Π½ΠΈΡ
AI-ΡΡΡΠ΅Π½Ρ.
ΠΠ°Ρ ΡΠ΅Ρ Π½ΠΎΠ»ΠΎΠ³ΡΡΠ½ΠΈΠΉ ΡΡΠ΅ΠΊ:
- ML: PyTorch, TensorFlow, Scikit-learn, YOLO, spaCy, Transformers, LLM.
- Web: Flask, FastAPI, Docker.
- Cloud (Azure/AWS): Azure Web Apps, Azure ML, Azure DevOps, Azure Functions, Azure Service Bus, Application Insights, DB/Blob Storage, AWS SageMaker, AWS Lambda, AWS ECR.
- General: Π ΠΎΠ·ΡΠΌΡΠ½Π½Ρ ΠΊΠ»Π°ΡΠΈΡΠ½ΠΈΡ Π°Π»Π³ΠΎΡΠΈΡΠΌΡΠ² ML (Random Forest, SVM, KNN), Π΄ΠΎΡΠ²ΡΠ΄ ΡΠΎΠ±ΠΎΡΠΈ Π· API.
ΠΠ΅ΠΎΠ±Ρ ΡΠ΄Π½Ρ Π½Π°Π²ΠΈΡΠΊΠΈ ΡΠ° Π΄ΠΎΡΠ²ΡΠ΄:- ΠΠΎΠΌΠ΅ΡΡΡΠΉΠ½ΠΈΠΉ Π΄ΠΎΡΠ²ΡΠ΄ ΡΠΎΠ±ΠΎΡΠΈ Π½Π° ΠΏΠΎΠ·ΠΈΡΡΡ ML Engineer Π²ΡΠ΄ 1-Π³ΠΎ ΡΠΎΠΊΡ.
- ΠΠ»ΠΈΠ±ΠΎΠΊΡ Π·Π½Π°Π½Π½Ρ ΡΠ° ΠΏΡΠ°ΠΊΡΠΈΡΠ½ΠΈΠΉ Π΄ΠΎΡΠ²ΡΠ΄ ΡΠΎΠ±ΠΎΡΠΈ Π· Python ΡΠ° ΠΊΠ»ΡΡΠΎΠ²ΠΈΠΌΠΈ Π±ΡΠ±Π»ΡΠΎΡΠ΅ΠΊΠ°ΠΌΠΈ Π΄Π»Ρ ΠΌΠ°ΡΠΈΠ½Π½ΠΎΠ³ΠΎ Π½Π°Π²ΡΠ°Π½Π½Ρ (PyTorch, TensorFlow, Scikit-learn).
- ΠΠΎΡΠ²ΡΠ΄ ΡΠΎΠ±ΠΎΡΠΈ Π· ΠΎΠ΄Π½ΡΡΡ Π°Π±ΠΎ Π΄Π΅ΠΊΡΠ»ΡΠΊΠΎΠΌΠ° Π· Π½Π°ΡΡΡΠΏΠ½ΠΈΡ Π·Π°Π΄Π°Ρ: Object Detection (Π½Π°ΠΏΡΠΈΠΊΠ»Π°Π΄, YOLO), NER, Text Classification.
- ΠΡΠ°ΠΊΡΠΈΡΠ½ΠΈΠΉ Π΄ΠΎΡΠ²ΡΠ΄ ΡΠΎΠ±ΠΎΡΠΈ Π· ΡΡΠ°Π½ΡΡΠΎΡΠΌΠ΅ΡΠ°ΠΌΠΈ ΡΠ° Π²Π΅Π»ΠΈΠΊΠΈΠΌΠΈ ΠΌΠΎΠ²Π½ΠΈΠΌΠΈ ΠΌΠΎΠ΄Π΅Π»ΡΠΌΠΈ (LLM).
- Π ΠΎΠ·ΡΠΌΡΠ½Π½Ρ ΠΏΡΠΈΠ½ΡΠΈΠΏΡΠ² MLOps ΡΠ° Π΄ΠΎΡΠ²ΡΠ΄ ΡΠΎΠ·Π³ΠΎΡΡΠ°Π½Π½Ρ ΠΌΠΎΠ΄Π΅Π»Π΅ΠΉ Π² ΠΎΠ΄Π½ΠΎΠΌΡ Π· Ρ ΠΌΠ°ΡΠ½ΠΈΡ ΡΠ΅ΡΠ΅Π΄ΠΎΠ²ΠΈΡ (Azure Π°Π±ΠΎ AWS).
- ΠΠΎΡΠ²ΡΠ΄ ΡΠΎΠ±ΠΎΡΠΈ Π· Docker Π΄Π»Ρ ΠΊΠΎΠ½ΡΠ΅ΠΉΠ½Π΅ΡΠΈΠ·Π°ΡΡΡ Π΄ΠΎΠ΄Π°ΡΠΊΡΠ².
- Π ΠΎΠ·ΡΠΌΡΠ½Π½Ρ ΠΏΡΠΈΠ½ΡΠΈΠΏΡΠ² ΠΏΠΎΠ±ΡΠ΄ΠΎΠ²ΠΈ ΡΠ° ΡΠΎΠ±ΠΎΡΠΈ Π· API (Flask, FastAPI).
ΠΡΠ΄Π΅ ΠΏΠ»ΡΡΠΎΠΌ:- ΠΠΎΡΠ²ΡΠ΄ ΡΠΎΠ±ΠΎΡΠΈ Π· Azure (Azure ML, Azure DevOps, Azure Functions).
- ΠΠΎΡΠ²ΡΠ΄ ΡΠΎΠ±ΠΎΡΠΈ Π· AWS (SageMaker, Lambda).
- ΠΠΎΡΠ²ΡΠ΄ ΡΠΎΠ±ΠΎΡΠΈ Π· ΡΠ½ΡΡΡΡΠΌΠ΅Π½ΡΠ°ΠΌΠΈ Π΄Π»Ρ ΠΎΠ±ΡΠΎΠ±ΠΊΠΈ ΡΠ° Π°Π½Π°Π»ΡΠ·Ρ Π²Π΅Π»ΠΈΠΊΠΈΡ Π΄Π°Π½ΠΈΡ .
- ΠΠΌΡΠ½Π½Ρ ΠΏΡΠ°ΡΡΠ²Π°ΡΠΈ Π² ΠΊΠΎΠΌΠ°Π½Π΄Ρ ΡΠ° ΡΠ°ΠΌΠΎΡΡΡΠΉΠ½ΠΎ ΠΏΡΠΈΠΉΠΌΠ°ΡΠΈ ΡΡΡΠ΅Π½Π½Ρ.
Π©ΠΎ ΠΌΠΈ ΠΏΡΠΎΠΏΠΎΠ½ΡΡΠΌΠΎ- ΠΠΈΠ½Π°ΠΌΡΡΠ½Π΅ ΡΠ΅ΡΠ΅Π΄ΠΎΠ²ΠΈΡΠ΅ ΡΡΠ°ΡΡΠ°ΠΏΡ Π· Π²Π΅Π»ΠΈΠΊΠΈΠΌ ΠΏΠΎΡΠ΅Π½ΡΡΠ°Π»ΠΎΠΌ Π΄Π»Ρ Π·ΡΠΎΡΡΠ°Π½Π½Ρ.
- ΠΠΎΠ½ΠΊΡΡΠ΅Π½ΡΠΎΡΠΏΡΠΎΠΌΠΎΠΆΠ½Π° Π·Π°ΡΠΏΠ»Π°ΡΠ°.
- ΠΠ½ΡΡΠΊΠΈΠΉ Π³ΡΠ°ΡΡΠΊ ΡΠΎΠ±ΠΎΡΠΈ ΡΠ° ΠΌΠΎΠΆΠ»ΠΈΠ²ΡΡΡΡ ΠΏΡΠ°ΡΡΠ²Π°ΡΠΈ Π²ΡΠ΄Π΄Π°Π»Π΅Π½ΠΎ.
- ΠΠΎΠΆΠ»ΠΈΠ²ΠΎΡΡΡ Π΄Π»Ρ ΠΏΡΠΎΡΠ΅ΡΡΠΉΠ½ΠΎΠ³ΠΎ ΡΠΎΠ·Π²ΠΈΡΠΊΡ ΡΠ° Π½Π°Π²ΡΠ°Π½Π½Ρ.
- Π‘ΠΏΡΠ²ΠΏΡΠ°ΡΡ Π² ΡΠ½Π½ΠΎΠ²Π°ΡΡΠΉΠ½ΡΠΉ ΡΠ° ΠΏΡΠ΄ΡΡΠΈΠΌΡΡΡΡΠΉ ΠΊΠΎΠΌΠ°Π½Π΄Ρ.
ΠΡΠΎΡΠ΅Ρ Π½Π°ΠΉΠΌΡ
- ΠΠΎΡΠΎΡΠΊΠΈΠΉ ΠΊΠΎΠ» Π΄Π»Ρ Π·Π½Π°ΠΉΠΎΠΌΡΡΠ²Π° (30 Ρ Π²).
- Π’Π΅Ρ Π½ΡΡΠ½ΠΈΠΉ Π΅ΡΠ°ΠΏ: live-tasks/ΠΎΠ±Π³ΠΎΠ²ΠΎΡΠ΅Π½Π½Ρ Π²Π°ΡΠΈΡ ΠΏΡΠΎΠ΄Π°ΠΊΡΠ½-ΠΊΠ΅ΠΉΡΡΠ² (60β90 Ρ Π²).
- Π‘ΠΏΡΠ²Π±Π΅ΡΡΠ΄Π° Π· ΡΠ°ΡΠ½Π΄Π΅ΡΠΎΠΌ (30β45 Ρ Π²).
- ΠΡΡΠ΅Ρ.
-
Β· 102 views Β· 5 applications Β· 14d
Middle AI Engineer (Π±ΡΠΎΠ½ΡΠ²Π°Π½Π½Ρ) to $4500
Hybrid Remote Β· Ukraine (Dnipro, Kyiv, Odesa) Β· Product Β· 3 years of experience Β· B1 - IntermediateGalaktica β ΡΠΊΡΠ°ΡΠ½ΡΡΠΊΠ° ΠΏΡΠΎΠ΄ΡΠΊΡΠΎΠ²Π° ΠΠ’-ΠΊΠΎΠΌΠΏΠ°Π½ΡΡ, ΡΠΊΠ° Π²ΠΆΠ΅ ΠΏΠΎΠ½Π°Π΄ 5 ΡΠΎΠΊΡΠ² ΡΡΠΏΡΡΠ½ΠΎ ΡΡΠ²ΠΎΡΡΡ ΡΠ° ΠΏΡΠΎΡΡΠ²Π°Ρ Π²Π»Π°ΡΠ½Ρ ΠΎΠ½Π»Π°ΠΉΠ½-ΠΏΡΠΎΡΠΊΡΠΈ Π½Π° ΡΠ²ΡΡΠΎΠ²ΠΎΠΌΡ ΡΠΈΠ½ΠΊΡ. ΠΠΈ ΠΏΡΠ°Π³Π½Π΅ΠΌΠΎ Π΄ΠΎ Π·ΡΠΎΡΡΠ°Π½Π½Ρ ΠΉ ΡΠΎΠ·Π²ΠΈΡΠΊΡ Π½Π°ΡΠΈΡ ΡΠΏΡΠ²ΡΠΎΠ±ΡΡΠ½ΠΈΠΊΡΠ², Π° ΡΠ°ΠΊΠΎΠΆ ΡΠ½Π²Π΅ΡΡΡΡΠΌΠΎ Π² ΠΌΠ°ΡΡΡΠ°Π±ΡΠ²Π°Π½Π½Ρ ΡΠ° Π·Π°ΠΏΡΡΠΊ Π½ΠΎΠ²ΠΈΡ ...Galaktica β ΡΠΊΡΠ°ΡΠ½ΡΡΠΊΠ° ΠΏΡΠΎΠ΄ΡΠΊΡΠΎΠ²Π° ΠΠ’-ΠΊΠΎΠΌΠΏΠ°Π½ΡΡ, ΡΠΊΠ° Π²ΠΆΠ΅ ΠΏΠΎΠ½Π°Π΄ 5 ΡΠΎΠΊΡΠ² ΡΡΠΏΡΡΠ½ΠΎ ΡΡΠ²ΠΎΡΡΡ ΡΠ° ΠΏΡΠΎΡΡΠ²Π°Ρ Π²Π»Π°ΡΠ½Ρ ΠΎΠ½Π»Π°ΠΉΠ½-ΠΏΡΠΎΡΠΊΡΠΈ Π½Π° ΡΠ²ΡΡΠΎΠ²ΠΎΠΌΡ ΡΠΈΠ½ΠΊΡ. ΠΠΈ ΠΏΡΠ°Π³Π½Π΅ΠΌΠΎ Π΄ΠΎ Π·ΡΠΎΡΡΠ°Π½Π½Ρ ΠΉ ΡΠΎΠ·Π²ΠΈΡΠΊΡ Π½Π°ΡΠΈΡ ΡΠΏΡΠ²ΡΠΎΠ±ΡΡΠ½ΠΈΠΊΡΠ², Π° ΡΠ°ΠΊΠΎΠΆ ΡΠ½Π²Π΅ΡΡΡΡΠΌΠΎ Π² ΠΌΠ°ΡΡΡΠ°Π±ΡΠ²Π°Π½Π½Ρ ΡΠ° Π·Π°ΠΏΡΡΠΊ Π½ΠΎΠ²ΠΈΡ Π²Π½ΡΡΡΡΡΠ½ΡΡ ΡΡΠ°ΡΡΠ°ΠΏΡΠ². ΠΠ°ΡΠ° Π°ΠΌΠ±ΡΡΠ½Π° ΠΌΠ΅ΡΠ° β ΡΡΠ°ΡΠΈ ΠΏΠΎΠ²Π½ΠΎΡΡΠ½Π½ΠΈΠΌ ΠΠ’-Ρ ΠΎΠ»Π΄ΠΈΠ½Π³ΠΎΠΌ Ρ ΡΠΎΠ·ΡΠΎΠ±Π»ΡΡΠΈ ΡΠ½Π½ΠΎΠ²Π°ΡΡΠΉΠ½Ρ ΠΏΡΠΎΠ΄ΡΠΊΡΠΈ Π² ΠΏΠ΅ΡΡΠΏΠ΅ΠΊΡΠΈΠ²Π½ΠΈΡ Π½ΡΡΠ°Ρ ΡΠ· Π²ΠΈΠΊΠΎΡΠΈΡΡΠ°Π½Π½ΡΠΌ ΡΡΡΡΠ½ΠΎΠ³ΠΎ ΡΠ½ΡΠ΅Π»Π΅ΠΊΡΡ.
ΠΠΈΠ½Ρ ΠΌΠΈ ΡΡΠΊΠ°ΡΠΌΠΎ ΡΠΈΠ»ΡΠ½ΠΎΠ³ΠΎ ΡΠ° ΠΏΡΠΎΠ°ΠΊΡΠΈΠ²Π½ΠΎΠ³ΠΎ AI Engineer, ΡΠΊΠΈΠΉ Π΄ΠΎΠΏΠΎΠΌΠ°Π³Π°ΡΠΈΠΌΠ΅ Π² ΡΠ΅Π°Π»ΡΠ·Π°ΡΡΡ Π·Π°Π΄Π°Ρ Π΄Π»Ρ ΡΡΠ½ΡΡΡΠΎΠ³ΠΎ ΠΏΡΠΎΠ΄ΡΠΊΡΡ Π· Π¨Π-ΡΠΊΠ»Π°Π΄ΠΎΠ²ΠΎΡ, ΠΏΡΠ΄ΡΡΠΈΠΌΠ°Ρ Π·Π°ΠΏΡΡΠΊ ΡΠ΅ ΠΎΠ΄Π½ΠΎΠ³ΠΎ Π½ΠΎΠ²ΠΎΠ³ΠΎ ΠΏΡΠΎΠ΄ΡΠΊΡΡ ΡΠ° Π²ΡΠ΄ΠΏΠΎΠ²ΡΠ΄Π°ΡΠΈΠΌΠ΅ Π·Π° AI-Π½Π°ΠΏΡΡΠΌ Ρ Π½Π°ΡΠΎΠΌΡ R&D-ΠΏΡΠ΄ΡΠΎΠ·Π΄ΡΠ»Ρ.
Π§ΠΈΠΌ ΠΌΠΈ Π²Π°ΠΌ Π±ΡΠ΄Π΅ΠΌΠΎ ΠΊΠΎΡΠΈΡΠ½Ρ:
- Π ΠΎΠ±ΠΎΡΠ° Π½Π° cutting edge AI ΡΠ΅Ρ Π½ΠΎΠ»ΠΎΠ³ΡΠΉ: Π²ΠΈΠΊΠΎΡΠΈΡΡΠ°Π½Π½Ρ Π½Π°ΠΉΠ½ΠΎΠ²ΡΡΠΈΡ LLM, RAG ΠΏΡΠ΄Ρ ΠΎΠ΄ΡΠ², AI Π°Π³Π΅Π½ΡΡΠ² Ρ ΡΠ΅Π°Π»ΡΠ½ΠΎΠΌΡ ΠΏΡΠΎΠ΄ΡΠΊΡΡ
- ΠΠΏΠ»ΠΈΠ² Π½Π° ΠΏΡΠΎΠ΄ΡΠΊΡ Π²ΡΠ΄ early stage: ΠΌΠΎΠΆΠ»ΠΈΠ²ΡΡΡΡ ΡΠΎΡΠΌΡΠ²Π°ΡΠΈ AI ΡΡΡΠ°ΡΠ΅Π³ΡΡ Π· Π½ΡΠ»Ρ, Π° Π½Π΅ ΠΏΡΠ°ΡΡΠ²Π°ΡΠΈ Π· legacy
- Π¨Π²ΠΈΠ΄ΠΊΠ΅ Π·ΡΠΎΡΡΠ°Π½Π½Ρ Ρ LLM ΡΡΠ΅ΡΡ
- Meaningful product: AI Π΄Π»Ρ wellbeing ΡΠ° ΡΠ°ΠΌΠΎΡΠΎΠ·Π²ΠΈΡΠΊΡ β Π΄ΠΎΠΏΠΎΠΌΠΎΠ³Π° Π»ΡΠ΄ΡΠΌ, Π° Π½Π΅ ΠΏΡΠΎΡΡΠΎ ΠΊΠΎΠΌΠ΅ΡΡΡΡ
- Π‘ΡΠ°Π±ΡΠ»ΡΠ½ΡΡΡΡ + Π΄ΠΈΠ½Π°ΠΌΡΠΊΠ°: ΡΡΠ½Π°Π½ΡΡΠ²Π°Π½Π½Ρ Π²ΡΠ΄ ΡΡΠΏΡΡΠ½ΠΎΠ³ΠΎ Ρ ΠΎΠ»Π΄ΠΈΠ½Π³Ρ (5+ ΡΠΎΠΊΡΠ² Π½Π° ΡΠΈΠ½ΠΊΡ) + startup ΡΠ²ΠΎΠ±ΠΎΠ΄Π° Π΅ΠΊΡΠΏΠ΅ΡΠΈΠΌΠ΅Π½ΡΡΠ²
ΠΠ° Π΄Π°Π½ΡΠΉ ΠΏΠΎΡΠ°Π΄Ρ Π²Π°ΠΌ Π½Π΅ΠΎΠ±Ρ ΡΠ΄Π½ΠΎ Π±ΡΠ΄Π΅ Π²ΠΈΡΡΡΠΈΡΠΈ Π½Π°ΡΡΡΠΏΠ½Ρ Π·Π°Π΄Π°ΡΡ:
- Π ΠΎΠ·ΡΠΎΠ±ΠΈΡΠΈ AI-ΠΏΠΎΠΌΡΡΠ½ΠΈΠΊΠ° Π½Π° Π±Π°Π·Ρ LLM Π· Π²ΠΈΠΊΠΎΡΠΈΡΡΠ°Π½Π½ΡΠΌ ΡΡΠ½ΡΡΡΠΈΡ API (OpenAI, Anthropic) ΡΠ° open-source ΠΌΠΎΠ΄Π΅Π»Π΅ΠΉ
- ΠΠΌΠΏΠ»Π΅ΠΌΠ΅Π½ΡΡΠ²Π°ΡΠΈ RAG ΡΠΈΡΡΠ΅ΠΌΡ Π΄Π»Ρ Π½Π°Π΄Π°Π½Π½Ρ ΠΏΠ΅ΡΡΠΎΠ½Π°Π»ΡΠ·ΠΎΠ²Π°Π½ΠΈΡ Π²ΡΠ΄ΠΏΠΎΠ²ΡΠ΄Π΅ΠΉ Π½Π° Π±Π°Π·Ρ Π΄Π°Π½ΠΈΡ ΠΊΠΎΡΠΈΡΡΡΠ²Π°ΡΡΠ²
- ΠΠ½ΡΠ΅Π³ΡΡΠ²Π°ΡΠΈ AI-ΠΏΠΎΠΌΡΡΠ½ΠΈΠΊΠ° Π· ΡΡΠ½ΠΊΡΡΡΠΌΠΈ Π΄ΠΎΠ΄Π°ΡΠΊΡ: ΠΊΠ°Π»Π΅Π½Π΄Π°Ρ, ΡΡΠ΅ΠΊΠ΅ΡΠΈ Π·Π΄ΠΎΡΠΎΠ²βΡ, ΠΎΡΠΎΠ±ΠΈΡΡΡ Π΄Π°Π½Ρ ΠΊΠΎΡΠΈΡΡΡΠ²Π°ΡΡΠ²
- Π ΠΎΠ·ΡΠΎΠ±ΠΈΡΠΈ prompt engineering ΡΡΡΠ°ΡΠ΅Π³ΡΡ Π΄Π»Ρ ΠΎΠΏΡΠΈΠΌΡΠ·Π°ΡΡΡ ΡΠΊΠΎΡΡΡ ΡΠ° ΡΠ΅Π»Π΅Π²Π°Π½ΡΠ½ΠΎΡΡΡ Π²ΡΠ΄ΠΏΠΎΠ²ΡΠ΄Π΅ΠΉ ΠΌΠΎΠ΄Π΅Π»Ρ
- ΠΠ°Π»Π°ΡΡΡΠ²Π°ΡΠΈ Π²Π΅ΠΊΡΠΎΡΠ½Ρ Π±Π°Π·ΠΈ Π΄Π°Π½ΠΈΡ Π΄Π»Ρ Π΅ΡΠ΅ΠΊΡΠΈΠ²Π½ΠΎΠ³ΠΎ ΠΏΠΎΡΡΠΊΡ ΡΠ° retrieval ΡΠ½ΡΠΎΡΠΌΠ°ΡΡΡ
- ΠΠΏΡΠΈΠΌΡΠ·ΡΠ²Π°ΡΠΈ performance ΡΠ° cost LLM Π·Π°ΠΏΠΈΡΡΠ² (caching, streaming, batch processing)
- Π‘ΠΏΡΠ²ΠΏΡΠ°ΡΡΠ²Π°ΡΠΈ Π· backend ΠΊΠΎΠΌΠ°Π½Π΄ΠΎΡ Π΄Π»Ρ ΡΠ½ΡΠ΅Π³ΡΠ°ΡΡΡ LLM ΡΡΠ½ΠΊΡΡΠΎΠ½Π°Π»Ρ Π² Π°ΡΡ ΡΡΠ΅ΠΊΡΡΡΡ ΠΏΡΠΎΠ΄ΡΠΊΡΡ
- ΠΡΠΎΠ²ΠΎΠ΄ΠΈΡΠΈ evaluation ΡΠ° ΡΠ΅ΡΡΡΠ²Π°Π½Π½Ρ LLM outputs Π½Π° ΡΠΊΡΡΡΡ, Π±Π΅Π·ΠΏΠ΅ΠΊΡ ΡΠ° Π²ΡΠ΄ΠΏΠΎΠ²ΡΠ΄Π½ΡΡΡΡ Π²ΠΈΠΌΠΎΠ³Π°ΠΌ
- ΠΠΎΡΠ»ΡΠ΄ΠΆΡΠ²Π°ΡΠΈ Π½ΠΎΠ²Ρ LLM ΡΠ΅Ρ Π½ΠΎΠ»ΠΎΠ³ΡΡ ΡΠ° ΠΏΡΠΎΠΏΠΎΠ½ΡΠ²Π°ΡΠΈ ΠΏΠΎΠΊΡΠ°ΡΠ΅Π½Π½Ρ Π΄Π»Ρ ΠΏΡΠΎΠ΄ΡΠΊΡΡ
- ΠΠΎΠΊΡΠΌΠ΅Π½ΡΡΠ²Π°ΡΠΈ ΡΡΡΠ΅Π½Π½Ρ ΡΠ° ΡΡΠ²ΠΎΡΡΠ²Π°ΡΠΈ guidelines Π΄Π»Ρ ΡΠΎΠ±ΠΎΡΠΈ Π· LLM
Π―ΠΊΡ Π½Π°Π²ΠΈΡΠΊΠΈ ΡΠ° ΠΊΡΠΈΡΠ΅ΡΡΡ Π½Π°ΠΌ Π·Π°ΡΠ°Π· Π²Π°ΠΆΠ»ΠΈΠ²Ρ:
- 2-3 ΡΠΎΠΊΠΈ commercial Π΄ΠΎΡΠ²ΡΠ΄Ρ Π² Machine Learning / NLP / Data Science
- ΠΡΠ½ΡΠΌΡΠΌ 1 ΡΡΠΊ ΠΏΡΠ°ΠΊΡΠΈΡΠ½ΠΎΡ ΡΠΎΠ±ΠΎΡΠΈ Π· Large Language Models, ΠΏΠΎΠ±ΡΠ΄ΠΎΠ²ΠΈ AI Agent (OpenAI API, Claude API, Π°Π±ΠΎ open-source ΠΌΠΎΠ΄Π΅Π»Ρ ΡΠΈΠΏΡ LLaMA, Mistral)
- ΠΠΎΡΠ²ΡΠ΄ ΠΏΠΎΠ±ΡΠ΄ΠΎΠ²ΠΈ RAG (Retrieval-Augmented Generation) ΡΠΈΡΡΠ΅ΠΌ
- ΠΡΠ°ΠΊΡΠΈΡΠ½ΠΈΠΉ Π΄ΠΎΡΠ²ΡΠ΄ Π· Langchain/Langraph Π΄Π»Ρ ΠΏΠΎΠ±ΡΠ΄ΠΎΠ²ΠΈ LLM applications
ΠΡΠ΄Π΅ ΠΏΠ»ΡΡΠΎΠΌ:
- ΠΠ½Π°Π½Π½Ρ JavaScript
- ΠΠΎΡΠ²ΡΠ΄ fine-tuning LLM ΠΌΠΎΠ΄Π΅Π»Π΅ΠΉ Π· Π²ΠΈΠΊΠΎΡΠΈΡΡΠ°Π½Π½ΡΠΌ LoRA, PEFT (Parameter-Efficient Fine-Tuning)
- ΠΠΎΡΠ²ΡΠ΄ ΡΠΎΠ±ΠΎΡΠΈ Π· open-source LLM ΠΌΠΎΠ΄Π΅Π»ΡΠΌΠΈ (LLaMA, Mistral, Qwen) ΡΠ° ΡΡ Π»ΠΎΠΊΠ°Π»ΡΠ½ΠΈΠΌ deployment
- Π ΠΎΠ±ΠΎΡΠ° Π· Ρ ΠΌΠ°ΡΠ½ΠΈΠΌΠΈ ΠΏΠ»Π°ΡΡΠΎΡΠΌΠ°ΠΌΠΈ (AWS, Azure, GCP) Π΄Π»Ρ ML workloads
- ΠΠΎΡΠ²ΡΠ΄ Π· evaluation ΠΌΠ΅ΡΡΠΈΠΊΠ°ΠΌΠΈ Π΄Π»Ρ LLM (BLEU, ROUGE, perplexity, custom metrics)
- ΠΠΎΡΠ²ΡΠ΄ ΡΠΎΠ±ΠΎΡΠΈ Ρ ΡΡΠ°ΡΡΠ°ΠΏΠ°Ρ Π°Π±ΠΎ Π· AI ΠΏΡΠΎΠ΄ΡΠΊΡΠ°ΠΌΠΈ Π²ΡΠ΄ Π½ΡΠ»Ρ
- ΠΠΎΡΠ²ΡΠ΄ ΠΎΠΏΡΠΈΠΌΡΠ·Π°ΡΡΡ LLM inference (quantization, caching, streaming)
Π©ΠΎ ΠΌΠΈ ΡΠ°Π΄Ρ Π²Π°ΠΌ Π·Π°ΠΏΡΠΎΠΏΠΎΠ½ΡΠ²Π°ΡΠΈ:
- Π€ΠΎΡΠΌΠ°Ρ ΡΠΎΠ±ΠΎΡΠΈ: ΠΎΠ±ΠΈΡΠ°ΠΉΡΠ΅, ΡΠΊ Π²Π°ΠΌ Π·ΡΡΡΠ½ΡΡΠ΅ β Π²ΡΠ΄Π΄Π°Π»Π΅Π½ΠΎ, Π³ΡΠ±ΡΠΈΠ΄Π½ΠΎ Π°Π±ΠΎ Π² ΠΎΡΡΡΡ Π² ΠΠΈΡΠ²Ρ, ΠΡΠ²ΠΎΠ²Ρ, ΠΠ΄Π΅ΡΡ ΡΠΈ Π½Π° ΠΡΠΏΡΡ (ΠΠ°ΡΠ½Π°ΠΊΠ°). Π£ΡΡ ΡΠΊΡΠ°ΡΠ½ΡΡΠΊΡ ΠΎΡΡΡΠΈ ΠΎΠ±Π»Π°Π΄Π½Π°Π½Ρ Π³Π΅Π½Π΅ΡΠ°ΡΠΎΡΠ°ΠΌΠΈ Π·Ρ Starlink Ρ Π΄ΠΎΡΡΡΠΏΠ½Ρ Π΄Π»Ρ ΠΊΠΎΠΌΠ°Π½Π΄ΠΈ 24/7. Π ΠΎΠ±ΠΎΡΠΈΠΉ Π³ΡΠ°ΡΡΠΊ β Π· 10:00 Π΄ΠΎ 18:30;
- ΠΠ±Π»Π°Π΄Π½Π°Π½Π½Ρ: Π½Π°Π΄Π°ΡΠΌΠΎ Π²ΡΠ΅ Π½Π΅ΠΎΠ±Ρ ΡΠ΄Π½Π΅ Π΄Π»Ρ ΠΊΠΎΠΌΡΠΎΡΡΠ½ΠΎΡ ΡΠΎΠ±ΠΎΡΠΈ ΡΠ° Π΄Π»Ρ Π²ΠΈΡΡΡΠ΅Π½Π½Ρ ΠΌΠ°ΡΡΡΠ°Π±Π½ΠΈΡ Π·Π°Π²Π΄Π°Π½Ρ, Π΅ΠΊΡΠΏΠ΅ΡΠΈΠΌΠ΅Π½ΡΡΠ² β Π½ΠΎΡΡΠ±ΡΠΊ/ΠΠ/Π΄ΠΎΠ΄Π°ΡΠΊΠΎΠ²Ρ ΠΌΠΎΠ½ΡΡΠΎΡΠΈ ΡΠΈ ΡΠΏΠ΅ΡΡΠ°Π»ΡΠ·ΠΎΠ²Π°Π½Ρ Π³Π°Π΄ΠΆΠ΅ΡΠΈ;
- ΠΠ΅Π·ΠΏΠ΅ΠΊΠ° ΡΠ° ΡΡΡΠ°Ρ ΠΎΠ²ΠΊΠ°: ΠΌΠΈ Π½Π΅ Π»ΠΈΡΠ΅ ΡΠ»ΡΠ΄ΠΊΡΡΠΌΠΎ Π·Π° ΡΡΠ²Π½Π΅ΠΌ Π·Π°Π΄ΠΎΠ²ΠΎΠ»Π΅Π½ΠΎΡΡΡ ΡΠΏΡΠ²ΡΠΎΠ±ΡΡΠ½ΠΈΠΊΡΠ², Π° ΠΉ Π΄Π±Π°ΡΠΌΠΎ ΠΏΡΠΎ Π²Π°Ρ Ρ ΡΠΊΡΡΡΠ½Ρ ΠΌΠΎΠΌΠ΅Π½ΡΠΈ. ΠΠΎΠΆΠ΅Π½ ΡΠΏΡΠ²ΡΠΎΠ±ΡΡΠ½ΠΈΠΊ ΠΌΠ°Ρ ΠΌΠ΅Π΄ΠΈΡΠ½Π΅ ΡΡΡΠ°Ρ ΡΠ²Π°Π½Π½Ρ Π·Π° ΡΠ°Ρ ΡΠ½ΠΎΠΊ ΠΊΠΎΠΌΠΏΠ°Π½ΡΡ (Π½Π° ΡΠ΅ΡΠΈΡΠΎΡΡΡ Π£ΠΊΡΠ°ΡΠ½ΠΈ) Π°Π±ΠΎ Π³ΡΠΎΡΠΎΠ²Ρ ΠΊΠΎΠΌΠΏΠ΅Π½ΡΠ°ΡΡΡ Π½Π° ΡΠΏΠΎΡΡ;
- ΠΡΠ΄ΠΏΠΎΡΠΈΠ½ΠΎΠΊ ΡΠ° Π±Π°Π»Π°Π½Ρ: 3 ΡΠΈΠΆΠ½Ρ ΠΎΠΏΠ»Π°ΡΡΠ²Π°Π½ΠΎΡ Π²ΡΠ΄ΠΏΡΡΡΠΊΠΈ ΡΠΎΡΠΎΠΊΡ, Π½Π΅ΠΎΠ±ΠΌΠ΅ΠΆΠ΅Π½Ρ day off ΡΠ° Π³Π½ΡΡΠΊΡ sick leaves Π±Π΅Π· Π·Π°ΠΉΠ²ΠΎΡ Π±ΡΡΠΎΠΊΡΠ°ΡΡΡ. ΠΠΈ Π΄ΠΎΠ²ΡΡΡΡΠΌΠΎ ΠΊΠΎΠΌΠ°Π½Π΄Ρ, ΡΠΎΠΌΡ ΠΏΡΠ΄ΡΡΠΈΠΌΡΡΠΌΠΎ Π·Π΄ΠΎΡΠΎΠ²ΠΈΠΉ Π±Π°Π»Π°Π½Ρ ΠΌΡΠΆ ΡΠΎΠ±ΠΎΡΠΎΡ ΡΠ° ΠΎΡΠΎΠ±ΠΈΡΡΠΈΠΌ ΠΆΠΈΡΡΡΠΌ;
- ΠΠΎΠ»Π΅Π³ΠΈ ΡΠ° Π°ΡΠΌΠΎΡΡΠ΅ΡΠ°: Π»ΡΠ΄ΠΈ, ΡΠΊΡ Π²Π°Ρ ΠΎΡΠΎΡΡΡΡΡ, Π²ΠΈΠ·Π½Π°ΡΠ°ΡΡΡ ΡΡΠ²Π΅Π½Ρ ΠΆΠΈΡΡΡ ΡΠ° ΡΠΎΠ·Π²ΠΈΡΠΎΠΊ. ΠΠ°Π²Π΄ΡΠΊΠΈ ΡΠΊΡΡΠ½ΠΈΠΌ Π΅ΡΠ°ΠΏΠ°ΠΌ ΡΠΏΡΠ²Π±Π΅ΡΡΠ΄ΠΈ, ΠΌΠΈ ΠΏΡΠ΄Π±ΠΈΡΠ°ΡΠΌΠΎ Π½Π°ΠΉΠΊΡΠ°ΡΠΈΡ Π· Π½Π°ΠΉΠΊΡΠ°ΡΠΈΡ . ΠΠΈ ΠΏΡΠ°ΡΡΠ²Π°ΡΠΈΠΌΠ΅ΡΠ΅ Π·Ρ ΡΠΏΡΠ°Π²ΠΆΠ½ΡΠΌΠΈ ΠΏΡΠΎΡΠ΅ΡΡΠΎΠ½Π°Π»Π°ΠΌΠΈ Ρ ΡΠ²ΠΎΡΠΉ ΡΡΠ΅ΡΡ;
- ΠΠ΅Π·ΠΏΠ΅ΡΠ΅ΡΠ²Π½ΠΈΠΉ ΡΠΎΠ·Π²ΠΈΡΠΎΠΊ: ΠΎΠΏΠ»Π°ΡΡΡΠΌΠΎ ΡΡΠ΅Π½ΡΠ½Π³ΠΈ, ΡΠ΅ΠΌΡΠ½Π°ΡΠΈ, ΠΎΠ½Π»Π°ΠΉΠ½-ΠΊΡΡΡΠΈ, ΠΊΠΎΠ½ΡΠ΅ΡΠ΅Π½ΡΡΡ. ΠΠ°ΡΠΌΠΎ Π²Π»Π°ΡΠ½Ρ LMS-ΡΠΈΡΡΠ΅ΠΌΡ, Π±ΡΠ±Π»ΡΠΎΡΠ΅ΠΊΡ ΡΠ° ΠΊΠ½ΠΈΠΆΠΊΠΎΠ²ΠΈΠΉ ΠΊΠ»ΡΠ±, ΡΠΊΡ ΠΎΠ±βΡΠ΄Π½ΡΡΡΡ ΡΠΈΡ , Ρ ΡΠΎ Π½Π΅ Π·ΡΠΏΠΈΠ½ΡΡΡΡΡΡ Π² Π½Π°Π²ΡΠ°Π½Π½Ρ. ΠΡΡΠΌ ΡΠΎΠ³ΠΎ, Ρ Π½Π°Ρ Ρ 3 ΡΠ΅ΡΡΠΈΡΡΠΊΠΎΠ²Π°Π½Ρ ΠΊΠΎΡΡΠΈ, ΡΠΊΡ ΠΏΡΠΎΠ²ΠΎΠ΄ΡΡΡ Π²Π½ΡΡΡΡΡΠ½Ρ Π½Π°Π²ΡΠ°Π½Π½Ρ ΡΠ° ΠΏΠ΅ΡΡΠΎΠ½Π°Π»ΡΠ½Ρ ΠΊΠΎΡΡ-ΡΠ΅ΡΡΡ Π΄Π»Ρ ΡΠΏΡΠ²ΡΠΎΠ±ΡΡΠ½ΠΈΠΊΡΠ² β ΡΠ΅ Π΄ΠΎΠΏΠΎΠΌΠ°Π³Π°Ρ ΠΊΡΠ°ΡΠ΅ ΡΠΎΠ·ΡΠΌΡΡΠΈ ΡΠ΅Π±Π΅, ΠΏΡΠΎΠΊΠ°ΡΡΠ²Π°ΡΠΈ Π»ΡΠ΄Π΅ΡΡΡΠΊΡ Π½Π°Π²ΠΈΡΠΊΠΈ ΡΠ° Π΄ΠΎΡΡΠ³Π°ΡΠΈ ΠΏΡΠΎΡΠ΅ΡΡΠΉΠ½ΠΈΡ ΡΡΠ»Π΅ΠΉ;
- ΠΠ½Π³Π»ΡΠΉΡΡΠΊΠ° ΠΌΠΎΠ²Π°: Π²ΠΈΠ΄ΡΠ»ΡΡΠΌΠΎ Π±ΡΠ΄ΠΆΠ΅Ρ Π½Π° ΡΠ½Π΄ΠΈΠ²ΡΠ΄ΡΠ°Π»ΡΠ½Ρ Π·Π°Π½ΡΡΡΡ ΡΠ° ΠΌΠ°ΡΠΌΠΎ Speaking Club, ΡΠΎΠ± Π²ΠΈ ΠΏΡΠΎΠΊΠ°ΡΠ°Π»ΠΈ ΡΠ²ΠΎΡ Π°Π½Π³Π»ΡΠΉΡΡΠΊΡ ΠΌΠΎΠ²Ρ ΡΠ° Π·Π°Π±ΡΠ»ΠΈ ΠΏΡΠΎ Π±ΡΠ΄Ρ-ΡΠΊΡ Π±Π°ΡβΡΡΠΈ;
- Π‘ΠΏΠΎΡΡΠΈΠ²Π½Ρ Π°ΠΊΡΠΈΠ²Π½ΠΎΡΡΡ: Π΄ΠΎΠ»ΡΡΠ°ΠΉΡΠ΅ΡΡ Π΄ΠΎ ΠΊΠΎΡΠΏΠΎΡΠ°ΡΠΈΠ²Π½ΠΈΡ ΡΡΠ΅Π½ΡΠ²Π°Π½Ρ Π· Π²ΠΎΠ»Π΅ΠΉΠ±ΠΎΠ»Ρ, Π±ΡΠ³Ρ Π°Π±ΠΎ ΠΉΠΎΠ³ΠΈ ΡΠΎΡΠΈΠΆΠ½Ρ, ΡΠΊΡ ΠΏΠΎΠ²Π½ΡΡΡΡ ΠΎΠΏΠ»Π°ΡΡΡ ΠΊΠΎΠΌΠΏΠ°Π½ΡΡ. ΠΠΈ Π²ΠΆΠ΅ ΠΏΡΠΎΠ±ΡΠ³Π»ΠΈ Π½Π΅ ΠΎΠ΄ΠΈΠ½ ΠΌΠ°ΡΠ°ΡΠΎΠ½, Π°Π΄ΠΆΠ΅ Π½Π°ΡΡ ΡΡΠ΅Π½Π΅ΡΠΈ β ΡΠΏΡΠ°Π²ΠΆΠ½Ρ ΠΏΡΠΎΡΠ΅ΡΡΠΎΠ½Π°Π»ΠΈ;
- ΠΠΎΠΌΠ°Π½Π΄Π½ΠΈΠΉ Π΄ΡΡ : ΠΌΠΈ ΡΠ΅Π³ΡΠ»ΡΡΠ½ΠΎ ΠΏΡΠΎΠ²ΠΎΠ΄ΠΈΠΌΠΎ ΡΡΠΌΠ±ΡΠ»Π΄ΡΠ½Π³ΠΈ Π²ΡΠ΄ Π²ΠΈΡΠ·Π½ΠΈΡ Π΄ΠΎ Π·Π°ΡΠΈΡΠ½ΠΈΡ Π·ΡΡΡΡΡΡΠ΅ΠΉ Π² ΠΎΡΡΡΡ. Π¦Π΅ ΡΡΠ΄ΠΎΠ²ΠΈΠΉ ΡΠ°Π½Ρ ΠΏΠΎΠ·Π½Π°ΠΉΠΎΠΌΠΈΡΠΈΡΡ Π±Π»ΠΈΠΆΡΠ΅ ΠΉ Π·Π°ΡΡΠ΄ΠΈΡΠΈΡΡ Π΅Π½Π΅ΡΠ³ΡΡΡ ΠΊΠΎΠΌΠ°Π½Π΄ΠΈ. ΠΡΠΌΠΎΡΡΠ΅ΡΡ Π½Π°ΡΠΈΡ ΡΠ²Π΅Π½ΡΡΠ² ΠΌΠΎΠΆΠ½Π° Π²ΡΠ΄ΡΡΡΠΈ ΡΡΡ β YouTube Galaktica.
π ΠΠ°ΡΠ° ΠΌΠ΅ΡΠ°
ΠΠΎΠ±ΡΠ΄ΡΠ²Π°ΡΠΈ ΠΏΡΠΎΠ΄ΡΠΊΡΠΎΠ²Ρ IT Π΅ΠΊΠΎΡΠΈΡΡΠ΅ΠΌΡ ΡΡΠ·Π½ΠΈΡ Π½Π°ΠΏΡΡΠΌΠΊΡΠ², Ρ ΡΠΊΡΠΉ ΠΊΠΎΠΆΠ΅Π½ ΡΠΏΡΠ²ΡΠΎΠ±ΡΡΠ½ΠΈΠΊ ΠΌΠ°ΡΠΈΠΌΠ΅ ΠΌΠΎΠΆΠ»ΠΈΠ²ΡΡΡΡ Π²ΡΠ΄ΠΊΡΠΈΠ²Π°ΡΠΈ Π²Π½ΡΡΡΡΡΠ½Ρ ΡΡΠ°ΡΡΠ°ΠΏΠΈ, ΡΠΎΡΡΠΈ ΡΠ° ΡΠ΅Π°Π»ΡΠ·ΠΎΠ²ΡΠ²Π°ΡΠΈ ΡΠ²ΠΎΡ ΡΠ΄Π΅Ρ. ΠΡΠΈΡΠ΄Π½ΡΠΉΡΠ΅ΡΡ!
π Π‘ΠΎΡΡΠ°Π»ΡΠ½Π° Π²ΡΠ΄ΠΏΠΎΠ²ΡΠ΄Π°Π»ΡΠ½ΡΡΡΡ
ΠΠ°ΡΠ° ΠΊΠΎΠΌΠΏΠ°Π½ΡΡ, ΡΠΊ ΡΠΎΡΡΠ°Π»ΡΠ½ΠΎ Π²ΡΠ΄ΠΏΠΎΠ²ΡΠ΄Π°Π»ΡΠ½ΠΈΠΉ Π±ΡΠ·Π½Π΅Ρ Π½Π° ΠΏΠΎΡΡΡΠΉΠ½ΡΠΉ ΠΎΡΠ½ΠΎΠ²Ρ ΡΠ΅Π°Π»ΡΠ·ΡΡ ΡΡΠ΄ ΠΏΡΠΎΠ΅ΠΊΡΡΠ² ΡΠ° ΡΠ½ΡΡΡΠ°ΡΠΈΠ² Π½Π°ΠΏΡΠ°Π²Π»Π΅Π½ΠΈΡ Π½Π° ΠΏΡΠ΄ΡΡΠΈΠΌΠΊΡ Π‘ΠΈΠ» ΠΎΠ±ΠΎΡΠΎΠ½ΠΈ, ΡΡΠ°ΡΠ½ΠΈΠΊΡΠ² Π±ΠΎΠΉΠΎΠ²ΠΈΡ Π΄ΡΠΉ ΡΠ° Π΄ΡΡΠ΅ΠΉ.
ΠΠ° Π±Π°Π·Ρ ΠΊΠΎΠΌΠΏΠ°Π½ΡΡ Π΄ΡΡΡΡ Π΄Π²Π° Π±Π»Π°Π³ΠΎΠ΄ΡΠΉΠ½Ρ ΡΠΎΠ½Π΄ΠΈ, ΡΠΊΡ ΡΠΏΠ΅ΡΡΠ°Π»ΡΠ·ΡΡΡΡΡΡ Π½Π° ΡΠ΅Π°Π±ΡΠ»ΡΡΠ°ΡΡΡ Π²ΡΠΉΡΡΠΊΠΎΠ²ΠΎΡΠ»ΡΠΆΠ±ΠΎΠ²ΡΡΠ² ΡΠ° Π΄ΠΎΠΏΠΎΠΌΠΎΠ·Ρ Π΄ΡΡΡΠΌ Π²ΡΠΉΡΡΠΊΠΎΠ²ΠΈΡ Ρ ΡΠΈΠΌ, Ρ ΡΠΎ ΠΏΠΎΡΡΡΠ°ΠΆΠ΄Π°Π² Π²ΡΠ΄ Π±ΠΎΠΉΠΎΠ²ΠΈΡ Π΄ΡΠΉ. ΠΠ°ΡΠ° ΠΊΠΎΠΌΠΏΠ°Π½ΡΡ ΠΏΠΎΠ²Π½ΡΡΡΡ Π·Π°Π±Π΅Π·ΠΏΠ΅ΡΡΡ Π°Π΄ΠΌΡΠ½ΡΡΡΡΠ°ΡΠΈΠ²Π½Ρ Π΄ΡΡΠ»ΡΠ½ΡΡΡΡ ΡΠΈΡ ΡΠΎΠ½Π΄ΡΠ² Ρ Π²ΠΈΠ΄ΡΠ»ΡΡ ΠΊΠΎΡΡΠΈ Π½Π° ΡΡ Π½Ρ ΠΎΡΠ½ΠΎΠ²Π½Ρ ΡΡΠ»Ρ.
ΠΠΈ ΡΠ΅Π³ΡΠ»ΡΡΠ½ΠΎ Π·Π°ΠΊΡΠΏΠΎΠ²ΡΡΠΌΠΎ FPV-Π΄ΡΠΎΠ½ΠΈ, ΠΠ Π ΡΠ° ΠΏΠΎΡΡΠ°ΡΠ°ΡΠΌΠΎ Π½Π°ΡΠΈΠΌ Π·Π°Ρ ΠΈΡΠ½ΠΈΠΊΠ°ΠΌ Π°Π²ΡΠΎΠΌΠΎΠ±ΡΠ»Ρ. ΠΠΈΠ½ΡΠ»ΠΎΠ³ΠΎ ΡΠΎΠΊΡ ΠΌΠΈ Π²ΠΈΡΡΡΠΈΠ»ΠΈ ΡΠΎΠ·ΡΠΈΡΠΈΡΠΈ Π½Π°ΡΡ ΠΏΡΠ΄ΡΡΠΈΠΌΠΊΡ ΠΠ‘Π£ Ρ ΠΏΠΎΡΠ°Π»ΠΈ ΡΠ½Π²Π΅ΡΡΡΠ²Π°ΡΠΈ Π² military-ΡΡΠ°ΡΡΠ°ΠΏΠΈ, ΡΠΎ Π·Π°ΠΉΠΌΠ°ΡΡΡΡΡ Π²ΠΈΡΠΎΠ±Π½ΠΈΡΡΠ²ΠΎΠΌ ΡΠ΄Π°ΡΠ½ΠΈΡ Π΄ΡΠΎΠ½ΡΠ² ΡΠ° ΠΠ Π, Π°Π΄ΠΆΠ΅ ΡΠ΅ΠΉ Π½Π°ΠΏΡΡΠΌ Ρ ΠΎΠ΄Π½ΠΈΠΌ ΡΠ· Π½Π°ΠΉΠΏΡΡΠΎΡΠΈΡΠ΅ΡΠ½ΡΡΠΈΡ Π΄Π»Ρ Π½Π°ΡΠΈΡ Π·Π±ΡΠΎΠΉΠ½ΠΈΡ ΡΠΈΠ».
ΠΡΠ΄Π΅ΠΌΠΎ ΡΠ°Π΄Ρ ΠΎΠ±Π³ΠΎΠ²ΠΎΡΠΈΡΠΈ Π²ΡΡ Π²Π°ΡΡ Π·Π°ΠΏΠΈΡΠ°Π½Π½Ρ ΡΠ° Π·Π°ΠΏΡΠΎΡΠΈΡΠΈ Π²Π°Ρ Π½Π° ΡΠΏΡΠ²Π±Π΅ΡΡΠ΄Ρ!
Telegram: valeriia_rudenko
ΠΠ°Π³ΠΎΠ»ΠΎΡΡΡΠΌΠΎ, ΠΌΠΈ Π·Π²βΡΠΆΠ΅ΠΌΠΎΡΡ Π· Π²Π°ΠΌΠΈ Π±ΡΠ΄Ρ-ΡΠΊΠΈΠΌ Π·ΡΡΡΠ½ΠΈΠΌ ΡΠΏΠΎΡΠΎΠ±ΠΎΠΌ Π΄Π»Ρ Π΄Π΅ΡΠ°Π»ΡΠ½ΠΎΠ³ΠΎ ΠΎΠ±Π³ΠΎΠ²ΠΎΡΠ΅Π½Π½Ρ Π½Π°ΡΠΎΡ Π²Π°ΠΊΠ°Π½ΡΡΡ Ρ ΡΠ°Π·Ρ Π·Π°ΡΡΠΊΠ°Π²Π»Π΅Π½ΠΎΡΡΡ ΠΊΠΎΠΌΠ°Π½Π΄ΠΈ Ρ Π²Π°ΡΡΠΉ ΠΊΠ°Π½Π΄ΠΈΠ΄Π°ΡΡΡΡ!
More